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ARTICLE

ABSTRACT
Analogical reasoning is an important type of cognition often used by experts across do-
mains. Little research, however, has investigated how generating analogies can support 
college students’ self-regulated learning (SRL) of biology. This study therefore evaluated 
a contextualized cognitive learning strategy intervention designed to teach students to 
generate analogies as a learning strategy to aid learning within a university biology course. 
Participants (n = 179) were taught how to generate analogies as a learning strategy to learn 
about plant and animal physiology. We hypothesized the quality of students’ generated 
analogies would increase over time, and their analogical reasoning, knowledge of cogni-
tion (KOC; a component of metacognitive awareness), and course performance would be 
higher after intervention, controlling for associated pre-intervention values. Regression 
analyses and repeated-measures analysis of variance indicated a positive relationship be-
tween generated-analogy quality and analogical reasoning, and increased analogy quality 
after intervention. No change in reported KOC was observed, and analogy quality did not 
predict course performance. Findings extend understanding of strategies that can sup-
port college students’ biology learning. Researchers and practitioners can leverage our 
approach to teaching analogies in their own research and classrooms to support students’ 
SRL, analogical reasoning, and learning.

INTRODUCTION
Bandura (2002) contends that higher-order skills and capabilities are required to “fulfill 
complex occupational roles and to manage the intricate demands of contemporary life” 
(p. 4). It is also widely recognized that students enrolled in science, technology, engi-
neering, and mathematics (STEM) programs, such as biology, must tap higher-order 
thinking skills to be successful (National Science and Technology Council, 2018). This 
has led many to call for an increased emphasis on teaching and supporting students’ 
self-regulated learning (SRL; National Council of Teachers of Mathematics, 2000; Ban-
dura, 2002; European Union Council, 2002; DiDonato, 2013). SRL is the extent to 
which a student deliberately plans, monitors, and regulates behavioral, motivational, 
and cognitive processes in pursuit of a goal (Hadwin et al., 2018). Self-regulated learn-
ers engage several subprocesses. Two of the most studied include self-regulation strat-
egies and metacognition (Pintrich, 2000), both targeted in this study. Other subpro-
cesses not addressed in this work include motivational processes. See Panadero (2017) 
and Puustinen and Pulkkinen (2001) for comprehensive reviews of SRL models.

Research has shown that higher-achieving students use self-regulation strategies 
more frequently and more effectively than lower-achieving peers (Zimmerman, 1986, 
2002; Dent and Koenka, 2016). SRL has also been closely associated with students’ 
academic delay-of-gratification and performance calibration (Chen and Bembenutty, 
2018). Despite the myriad benefits gleaned from effectively self-regulating learning, 
research also finds that students rarely have the self-regulatory skills sought by 
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employers, colleges, and trade schools (Winne and Jamieson- 
Noel, 2003; DiDonato, 2013) and required for successful careers 
in biology and related STEM fields. Further, recent research also 
indicates that students rarely regulate their learning without 
explicit prompting (Lazonder and Rouet, 2008; Raes et  al., 
2016). These findings may be due in part to the contexts in 
which SRL is typically studied—namely, highly controlled, 
researcher-generated, rather than authentic learning environ-
ments. This research, taken together, has resulted in calls for 
instruction that promotes students’ SRL within authentic learn-
ing environments (National Council of Teachers of Mathemat-
ics, 2000; European Union Council, 2002; DiDonato, 2013). 
The current study addressed these deficiencies and calls by 
implementing a contextualized learning strategies intervention 
in a university biology course. The intervention supported 
learner’s generation of analogies as a learning strategy. Using a 
within-subjects, pre/post design, we hypothesized that students 
would be able to generate analogies, they would get better at 
generating analogies, their generated-analogy quality would 
positively predict analogical reasoning and final course grade, 
and reported knowledge of cognition (KOC; a component of 
metacognition; Schraw and Moshman, 1995; Tanner, 2012) 
would increase after intervention.

LITERATURE REVIEW
The current study tested a learning strategy intervention within 
a postsecondary biology course. The intervention was grounded 
in SRL theory, which positions strategy use and metacognition 
as two critical subprocesses for successful SRL (Puustinen and 
Pulkkinen, 2001; Panadero, 2017). There are several other sub-
processes involved in successful SRL, but given the focus of this 
study, we only discuss these two. We direct readers to other 
sources to learn more about other SRL subprocesses (e.g., 
Zimmerman, 1986; Winne and Hadwin, 1998; Puustinen and 
Pulkkinen, 2001; Panadero, 2017). Metacognition comprises 
knowledge and regulation of cognition (ROC; Schraw and 
Moshman, 1995; Tanner, 2012). A student’s KOC includes 
declarative, procedural, and conditional knowledge, which per-
tain to knowledge of oneself as a learner and how learning 
occurs, and how and when to enact strategies, procedures, and 
skills. ROC includes several subcomponents, such as planning, 
monitoring, and evaluating. These subcomponents all function 
to modify one’s cognition (Schraw and Moshman, 1995), which 
we conceptualize as mental processing undertaken by learners 
consistent with an information-processing theoretical perspec-
tive (Atkinson and Shiffrin, 1968).

Given the multifaceted nature of SRL, interventions that tar-
get SRL may focus on one or multiple associated subcompo-
nents, such as learning strategies (e.g., self-explanation, draw-
ing, generating analogies; McNamara et al., 2004). The current 
intervention focused primarily on a cognitive learning strategy—
generating analogies. Recognizing the interconnectivity of SRL 
constructs, we hypothesized that the benefits from the interven-
tion may not only impact strategy use and achievement, but 
may also influence students’ metacognitive knowledge (KOC).

Cognitive Learning Strategies
Interventions intended to promote SRL often focus on learning 
strategy use, which is one component of the SRL processes. 
Learning strategies can be defined in several ways, but for this 

study, the following definition by Zimmerman (1989) is 
adopted: “actions and processes directed at acquiring informa-
tion or skill that involve agency, purpose, and instrumentality 
perceptions by the learners” (p. 329). There are several catego-
ries of strategies, including motivational, metacognitive, and 
cognitive strategies. The current study used a cognitive strategy, 
so only this type is discussed further.

Cognitive learning strategies are goal-directed, intentionally 
invoked, effortful procedures intended to influence the learning 
process (Weinstein and Mayer, 1986; Weinstein and Meyer, 
1991; Dinsmore, 2018). Because strategies are consciously 
implemented and are controllable, students need to have suffi-
cient knowledge about the strategies and sufficient motivation 
to apply them (Wittrock, 1990; Donker et  al., 2014). Thus, 
effective strategy interventions should focus on teaching stu-
dents when to use the strategy in addition to how (Pressley, 
2000) and should also emphasize the utility value of the strat-
egy—defined as the “usefulness” of a task as it pertains to a 
learner’s current or future plans (Eccles and Wigfield, 2020). 
Therefore, the most effective strategy instruction programs 
emphasize metacognitive conditional knowledge (Schraw and 
Gutierrez, 2015) and motivational components such as utility 
value and self-efficacy (Donker et al., 2014).

Analogical Reasoning.  Relational reasoning is “the founda-
tional human ability to discern patterns within any stream of 
information” (Dumas, 2017, p. 1). Relational reasoning com-
prises four types of reasoning—analogical, anomalous, antino-
mous, and antithetical—and has been supported as a type of 
cognition known to positively impact preparedness of STEM pro-
fessionals (Thiry et al., 2011). It has further been posited that 
relational reasoning is a foundational cognitive ability involved 
in complex problem solving (Bassok et al., 2012; Holyoak, 2012; 
Dumas, 2017), which may explain why expert and novice med-
ical professionals appear to differentially apply relational reason-
ing (Dumas et al., 2014). For definitions and examples of all four 
types of relational reasoning, please see Dumas et al. (2014). 
Although all types of relational reasoning are important, analog-
ical reasoning is commonly employed in educational settings as 
an explicit learning strategy taught to students. Analogical rea-
soning involves uncovering structural similarities among con-
cepts (Gentner, 1983; Alexander et  al., 2016; Dumas, 2017). 
The power of analogical reasoning can be leveraged by using 
analogies as a cognitive learning strategy. For example, Richland 
and McDonough (2010) reported students could be taught to 
effectively use analogies to solve mathematics problems. They 
found students’ learning benefited when they were supported 
in identifying relational similarities between two combination/
permutation problems. These results were replicated with prob-
lems that addressed proportional reasoning.

Although at least four forms of relational reasoning exist 
(Dumas et al., 2013; Dumas, 2017), analogical reasoning is the 
most studied, perhaps due to its empirical link to student suc-
cess within many domains, among them reading (Ehri et al., 
2009), mathematics (Richland and McDonough, 2010), chem-
istry (Trey and Khan, 2008), and biology (Grotzer et al., 2017; 
Emmons et al., 2018). Analogy is a powerful type of reasoning 
that elucidates the deep structure of a relationship between two 
concepts, even if attributes (surface features) of those concepts 
differ (Gentner, 1983). Attributes might include characteristics 
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such as color, shape, or size. They may cause two concepts to 
appear totally different, even if their deep structure is similar. 
The deep structure of a relationship is that which makes similar 
two seemingly unlike concepts. For example, a planet and an 
electron may seem different in terms of surface features (attri-
butes), but they both revolve around a central entity. The latter 
fact is part of the deep structure of their relationship (Gentner, 
1983). In this way, two entities can share a deep-structure rela-
tionship absent any attributional similarities—although they 
can share attributional similarities. Effective analogical reason-
ing ought to promote elaborative and organizational processing 
(Atkinson and Shiffrin, 1968; Mayer, 1996) by connecting new 
information to prior knowledge and helping the learner create, 
modify, and integrate coherent mental models (or schemas) for 
the new information (Sweller, 1988).

Analogical reasoning is malleable and teachable and can be 
promoted through strategy instruction (Alexander et al., 1989; 
Richland and McDonough, 2010; Dumas, 2017). For example, 
Alexander et al. (1989) taught 132 undergraduate education 
majors how to analyze the component parts (Sternberg, 1977) 
of nonverbal, four-term analogies (e.g., A:B::C:D), visual matrix 
analogies (like those seen on Raven’s matrices; Raven, 1958), 
and verbal analogies embedded within science texts. They 
found that students trained in science content and analogical 
reasoning improved their scores on several measures, including 
one of science analogies.

Researchers in a more recent study (Hattan, 2019) taught 
fifth- (n = 78) and sixth-grade (n = 71) students to use the four 
forms of relational reasoning while reading expository text to 
aid comprehension. In this intervention, students generated 
questions that pertained to each form of relational reasoning. 
For analogy, students asked how something in their own lives 
was similar to something in the expository text. Students 
trained in relational-reasoning question generation significantly 
outperformed a second intervention group (knowledge mobili-
zation) and control students on a comprehension measure.

Despite findings from these initial studies, there are four 
main gaps in the analogies research that we have identified. 
First, previous important work has not adequately investigated 
students’ ability to generate their own analogies after training. 
Instead, most of the research heretofore has focused on training 
students to analyze and use already-constructed analogies to 
learn or included traditional multiple-choice measures of ana-
logical reasoning as an outcome.

Second, the few studies that did ask students to generate 
their own analogies did not analyze these generated analogies as 
data. Doing so could reveal important insights about how effec-
tively (or ineffectively) students generate analogies, their devel-
oping understandings of key relationships among content, how 
the quality of their generated analogies relates to other individ-
ual differences, how their generated-analogy quality relates to 
course performance, and other important information.

Third, most of the analogies research to date has been 
undertaken outside authentic learning environments. Consid-
ering the established use of analogical reasoning among experts 
in the medical and other fields (Dumas et  al., 2014), it is 
important to study the analogies as a learning strategy within 
postsecondary biology courses, because they typically precede 
medical and other STEM-related careers in which analogical 
reasoning would be fruitful.

Finally, generating analogies may benefit students’ metacog-
nitive awareness—specifically KOC (Schraw and Dennison, 
1994; Schraw and Moshman, 1995). When students attempt to 
create an analogy, they must consider what they know and do 
not know about the content. Prior knowledge (which helps con-
stitute the base analogue) becomes conscious as it is drawn into 
working memory and mapped to the novel content analogically. 
Metacognitive monitoring ought to monitor the analogy-cre-
ation process, and this monitoring should result in metacogni-
tive experiences (Flavell, 1979) of either successful mapping 
(and thus a positive evaluation of one’s knowledge) or unsuc-
cessful mapping (and thus a negative evaluation of one’s knowl-
edge). Such metacognitive experiences would thus inform and 
perhaps modify a student’s KOC.

The current study targets these gaps in analogies research. In 
this study, students were not only taught what analogies were, 
when to use them, and why they were useful, but also how to 
generate them using their biology course content (focused on 
plant and animal physiology). We also collected students’ gen-
erated analogies and analyzed how analogical quality changed 
over time. Finally, we investigated the relationships between 
generated-analogy quality and academic performance, as well 
as individual differences (e.g., KOC).

PRESENT STUDY
In the present study, we aimed to bolster our knowledge of ben-
efits gleaned from analogies as a cognitive learning strategy by 
studying the effects of an analogies intervention. The interven-
tion was implemented within a university biology course 
designed for second-year students and thus extends analogy 
intervention research into more authentic learning contexts. 
This helps answer the call from some researchers (e.g., Dunlo-
sky et al., 2013) to investigate the utility of analogies in repre-
sentative contexts, and how analogical reasoning relates to 
other psychological constructs (Dumas, 2017).

Research Questions
Table 1 outlines the research questions and hypotheses for the 
present study. Generally, we were interested in the relations 
among the intervention, analogical reasoning, the quality of 
students’ generated analogies, their reported KOC, and their 
final course grades.

METHOD
Undergraduate students in an introductory biology course partic-
ipated in the four-part intervention. All students in the course 
(n = 451) were exposed to the intervention, as it was integrated 
into the course structure and learning management system 
(LMS; see Intervention Overview for further details); however, 
only students who volunteered to participate in the research by 
consenting to release their course grades and analogy data (n = 
321) were asked to complete pre- and posttest measures. Stu-
dents who did not volunteer to participate did not complete the 
pre- and posttest measures and did not consent to release their 
analogy data for the current study. Only students who had com-
plete data on primary variables and provided consent were 
included for analyses. Thus, the final sample for the present 
study included 179 students. Absent the ability to form a control 
group, research questions were amended to be relational and 
predictive in nature rather than causal. Table 2 presents 
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descriptive statistics regarding participants’ gender, concurrent 
biology course work, number of students receiving extra help, 
and year of study.

To confirm the students included in the final analytic sample 
were representative of the broader course enrollment, we con-
ducted a series of independent-samples t tests comparing them 
with students who consented to participate but did not have 
complete data on primary variables (and thus were excluded). 
It could be argued that students who had incomplete data due 
to attrition from pre to post survey and/or blank analogy data 
(n = 142) were systematically different from those with com-
plete data (n = 179) in ways that might affect the primary vari-
ables under study. Thus, the pre-survey values (when available) 
for the two groups were compared to assess any differences in 
self-efficacy for using analogies, self-efficacy for learning biol-
ogy, KOC, use of other SRL strategies, and analogical reasoning. 
No significant differences were found between the two groups 
on any of these variables. However, those with incomplete data 
on all primary variables did end up with a lower final course 
grade (mean = 84.90%), on average, than those with complete 
data on all primary variables (mean = 89.88%, mean difference 
= −4.98%, t(272.44) = −4.48, 95% bootstrapped CI [−7.17, −2.70], 
Cohen’s d = 0.51). Standard errors and confidence intervals 
were corrected using 1000 bootstrap samples and degrees of 
freedom were adjusted for unequal variances in the final course 
grade analysis.

Intervention Overview
The intervention was delivered through four online activities in 
the course LMS. Students completed each activity outside class 

time within 5 days of release, but each activity was completed 
sequentially and in the same order. Each activity was assessed 
for completion, and those who completed all activities were 
awarded extra credit equal to 1% of the final course grade. The 
four activities collectively addressed three core components of 
the intervention that align with elements of the transactional 
strategies instruction approach (Brown et al., 1996). These core 
components included a focus on declarative knowledge of anal-
ogies, metacognitive conditional knowledge of analogies, and 
practice with analogies. Activities 1 and 2 both assessed the 
declarative knowledge and practice components, while activi-
ties 3 and 4 addressed the metacognitive conditional knowledge 
and practice components. Students were instructed in class to 
contextualize their responses within the course content covered 
at the associated time of the semester. That is, generated analo-
gies were supposed to tie to course content in some way, but 
were not required to exclusively include course content.

Activity 1 first described Wittrock’s (1994) model of genera-
tive learning and how analogies can aid in generating the two 
types of meaningful relationships outlined in the model of gen-
erative learning (i.e., relations among to-be-learned informa-
tion and relations between to-be-learned information and prior 
knowledge). It also described how to create effective analogies 
by defining “analogies,” “deep structure,” and “surface features” 
and how these concepts relate to form an analogy. An example 
was also given in which the relationships and surface features 
were explicated. Supplemental Appendix A includes a copy of 
activity 1. Activity 2 reiterated this information, introduced 
some metacognitive conditional knowledge associated with 
when to use analogies, and provided new practice opportuni-
ties. Activity 3 addressed metacognitive conditional knowledge 
pertaining to analogies in more detail. Activity 4 reiterated this 
information. For the practice component, each activity included 
four unique questions created by M.S.D. and J.C.T. that demon-
strated analogies and analogical reasoning within the course 
content covered in the corresponding unit. Students answered 
each of these four example analogy questions, and then in a 
fifth question (for activities 1 and 2; fifth and sixth question for 
activities 3 and 4), were asked to generate their own analogy 
with course content. An example question from activity 4 is: 
“How is the linear flow of electrons between Photosystems II 
and I similar to water moving past a water wheel in a mill?” 
Activities 1 and 2 included one question that scaffolded stu-
dents to generate their own analogy and answer it. Activities 3 
and 4 included two such questions. An example question of this 
type is:

TABLE 1.  Research questions and corresponding hypotheses

Research questions Hypotheses

1. Can students generate analogies pertaining to course content, and 
if so, does generated-analogy quality increase throughout the 
intervention?

1. Students will generate analogies pertaining to course content, 
and generated-analogy quality will increase throughout the 
intervention.

2. Does generated-analogy quality positively predict post-intervention 
analogical reasoning, controlling for pre-intervention analogical 
reasoning?

2. Generated-analogy quality will positively predict post-intervention 
analogical reasoning, after controlling for pre-intervention 
analogical reasoning.

3. Does generated-analogy quality positively predict final course 
grade, controlling for prior course performance?

3. Generated-analogy quality will positively predict final course 
grade after controlling for prior course performance.

4. Does reported KOC increase from pre- to post-intervention, and is 
there an interaction with generated-analogy quality?

4A. Reported KOC will increase from pre- to post-intervention.
4B. Increases in KOC will interact with generated-analogy quality.

TABLE 2.  Demographic information for participants

Demographicsa N %
Male 46 25.70
Female 132 73.70
Taking at least one other biology course 28 15.64
Receiving outside help for the course 45 25.14
First year 82 45.80
Second year 52 29.10
Third year 31 17.30
Fourth year 12 6.70
Fifth year+ 2 1.10

aOne student did not report their gender. Outside help may include regular office 
hour visits, on- or off-campus tutoring, formal study groups, or informal help from 
friends.
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Now you try. Generate and attempt to answer your own 
analogy. A basic template to help you start follows: How is 
_____ [new concept] related to what you already know about 
______ [experience with something similar to this concept]?

Measures
Two primary constructs (analogical reasoning and KOC) were 
measured via identical pre- and postassessments. These assess-
ments included the Verbal Test of Relational Reasoning 
(vTORR; Alexander et al., 2016), the knowledge-of-cognition 
subscale of the 19-item version (Harrison and Vallin, 2018) of 
the Metacognitive Awareness Inventory (MAI; Schraw and 
Dennison, 1994), and demographic questions. Course perfor-
mance data and intervention responses were also collected 
from the course LMS, and intervention responses were coded 
for analogical complexity (see Supplemental Appendix B). Two 
students at time 3 and five at time 4 did not provide a “first” 
analogy (i.e., response to question 5), but did provide a “sec-
ond” analogy (i.e., response to question 6). In these cases, we 
used students’ “second” analogies in place of their missing 
“first” analogies. Thus, all students had complete analogy data 
at each time point.

vTORR.  Analogical reasoning was measured by the vTORR 
(Alexander et al., 2016). The vTORR assesses four types of rela-
tional reasoning: analogical, anomalous, antinomous, and anti-
thetical. Only the analogical reasoning subscale was used in the 
current study. Participants were presented two practice ques-
tions followed by eight questions used in score calculation. 
Each question presented a relationship and asked the partici-
pant to choose one of four answer choices that demonstrated a 
similar relationship. An example question stem is: “The inspired 
author opened the computer and began pouring words onto the 
page.” The provided answer choices (correct choice marked 
with *) for this stem were: a) The excited composer turned off 
the record and began to write a melody, b) The cheerful artist 
uncovered the easel and envisioned his composition, c) The 
exhilarated actor opened her script and recited her lines, or *d) 
The motivated sculptor picked up his chisel and started creating 
a statue. Test–retest reliability, latent factor reliability (coeffi-
cient H), and three sources of validity evidence (convergent, 
discriminant, and internal structure) have demonstrated the 
vTORR to be psychometrically sound for use at a single time 
point or multiple time points (Alexander et al., 2016). Impor-
tantly, Alexander et al. (2016) demonstrated that scores on the 
vTORR were not accounted for simply by linguistic ability 
(measured by the vocabulary cloze task from the Graduate 
Record Examination). The analogies subscale demonstrated 
somewhat lower reliability than desired in the present sample 
at pre survey (α = 0.60) and post survey (α = 0.61), but was still 
above the recommended threshold of 0.50 for use in research 
(Evers, 2001). Reliability estimates were also higher than 
observed values in prior research (Kottmeyer et al., 2019). Such 
relatively low reliability is likely due partially to the dichoto-
mous scoring of these multiple-choice items, because Cron-
bach’s alpha is calculated by correlating each item value (in this 
case, 0 = incorrect or 1 = correct) with the sum of the other item 
values and then comparing those values with the total variance 
observed across all items (Cronbach, 1951). Thus, the length 
of the scale and how each item is scored (e.g., dichotomous, 

polytomous, continuous) can influence Cronbach alpha values, 
because these factors limit the total possible variance in the 
measure. Still, a confirmatory factor analysis revealed the eight 
items loaded onto a single factor, as originally intended, with 
good model fit at both pre survey (χ2 = 34.90, p = 0.021, com-
parative fit index [CFI] = 0.97, root-mean-square error of 
approximation [RMSEA] = 0.05, standardized root-mean-
square residual [SRMR] = 0.06) and post survey (χ2 = 36.20, p 
= 0.015, CFI = 0.95, RMSEA = 0.05, SRMR = 0.07).

KOC.  A shortened version of the MAI was used to measure stu-
dents’ reported KOC (Schraw and Dennison, 1994). The origi-
nal measure contained 17 KOC items, but a recent study sug-
gests that a shortened version holds a better factor structure 
(Harrison and Vallin, 2018). Students were thus asked to rate 
each of eight statements from 1 (not at all typical of me) to 5 
(very typical of me). For the short version, the maximum-likeli-
hood estimation reliability estimate for the KOC subscale was 
0.80 (Harrison and Vallin, 2018), indicating sound reliability. 
An example item from the KOC subscale is: “I know what kind 
of information is most important to learn.” Internal consistency 
reliability estimates for the current sample were strong for both 
pre (α = 0.85) and post surveys (α = 0.86).

Coded Analogies.  We began the coding process by examining 
and coding all analogies submitted by students who had pro-
vided consent to participate in the study. Students’ generat-
ed-analogy responses (n = 2,226 across all students in the 
course) were coded from 0 to 5 to assess the level of processing 
required of the student to produce the response. After com-
pletely blank analogy responses (n = 551) were discarded, a 
corpus of non-blank analogies (n = 1675) remained and were 
coded. Next, we removed students from the study if they had 
incomplete data on primary variables (i.e., generated analo-
gies, course performance data, and survey data for analogical 
reasoning and KOC). Due to missingness on these primary 
variables, the final analytic sample comprised 179 students, 
and thus the number of coded analogies included for analyses 
was 716—only students’ first responses for activities 3 and 4 
were included (i.e., four analogies per student were included 
in analyses). The decision to include students’ first responses 
for activities 3 and 4 is discussed further in the Procedure sec-
tion. The coding framework is provided in Supplemental 
Appendix B.

Final Course Grades.  Final course grades (expressed in per-
cent) were retrieved from the LMS after all grades for the 
semester were entered. The final course grade calculation com-
prised daily clicker questions (6%), a laboratory component 
(25%), four regular exams (52%), and one final exam (17%).

Procedure
The intervention was delivered through four activities distrib-
uted and collected through the course LMS. Students submitted 
responses to each activity within 5 days of its release—submis-
sions after the fifth day were excluded from analyses. In total, 
178 students were excluded from analyses because they did not 
submit all analogies on time or did not submit all analogies. 
Three weeks after the final activity was released, students 
responded to the postassessments.
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After data collection was complete, the authors began 
analyzing the qualitative data. A coding framework to assess 
students’ generated analogies (question 5 on activities 1 and 2, 
and questions 5 and 6 on activities 3 and 4) was then created. 
For activities 3 and 4, the student’s first analogy score (i.e., 
question 5 in the activities) was used in analyses to facilitate 
better comparisons with those generated in activities 1 and 2 
(in which only one analogy was generated).

To develop the coding framework, 100 student-generated 
analogies (25 from each activity) were randomly selected. J.C.T. 
and R.A.S. then sorted each response into emergent categories 
based on similarity. These categories were then examined for 
distinctive features, which became the basis for the coding 
framework. M.S.D. (an expert in biology) was then consulted to 
ensure its applicability to the biology course content. After con-
firmation from M.S.D., the framework was iteratively refined 
through application to new batches of randomly selected 
responses (12 from each activity per batch). J.C.T., R.A.S., and 
T.M.Y. discussed each round of coding to identify coding dis-
crepancies and confusion in the framework. After four rounds 
of refinement, the final framework was developed and satisfac-
tory interrater reliability was achieved (agreement = 81%; 
Miles and Huberman, 1994; Saldaña, 2013).

Using the developed framework, J.C.T. and T.M.Y. inde-
pendently coded batches of analogies. To ensure ongoing 
interrater reliability, 20% of the analogies were double coded, 
and discrepancies were resolved through consensus coding. 
Our decision to double code 20% of the analogies was guided 
by recommendations from the literature (Creswell and Miller, 
2000; Campbell et al., 2013). The average interrater agree-
ment of this 20% segment was 76%, and the Spearman’s rho 
correlation was 0.91. Although disagreement was present, the 
magnitude of such disagreement was low. The high correla-
tion between the two coders partially ameliorates the slightly 
lower than expected agreement. Bias was mitigated by 
deidentifying the analogies during coding, such that the rat-
ers could not know which participant created the analogy or 
which activity (and thus part of the intervention) the analogy 
came from. A total of 1607 student-generated analogies were 
coded.

RESULTS
Descriptive statistics for all relevant variables are presented in 
Table 3; Table 4 presents the correlations among these 
variables.

Research Question 1: Change in Generated-Analogy 
Quality
The first research question investigated whether students could 
generate their own analogies pertaining to course content, and 
if so, whether students’ generated-analogy quality increased 
throughout the intervention. We hypothesized that students 
would be able to generate analogies using course content and 
that the quality of generated analogies would increase over the 
intervention. Based on the median scores of generated analogies 
at each time point (see Table 3) it was clear that at least half of 
the students could generate analogies using course content at 
time points 2–4. Fifteen (2.09%) analogy responses across all 
time points were coded “0,” indicating failure to even approxi-
mate an analogy. And the results of an omnibus repeated-mea-
sures ANOVA (with Greenhouse-Geisser–corrected degrees of 
freedom) indicated the quality of students’ generated analogies 
was not equal at all time points; F(2.84, 504.99) = 4.09, p = 
0.008, ηp

2 = 0.022.1 This significant F statistic indicates that vari-
ance in analogy scores is attributable to time point, and the asso-
ciated effect size is small (Cohen, 1988). Post hoc analyses with 
a Bonferroni adjustment for family-wise error indicated that 
participants’ generated analogies at time 4 (i.e., activity 4) were, 
on average, rated higher than the generated analogy at time 1 
(mean difference = 0.42, p = 0.02, d = 0.26). Further, partici-
pants’ generated analogy at time 3 was almost, on average, 
rated higher than the generated analogy at time 1 (mean differ-
ence = 0.35, p = 0.058, d = 0.19). Effect sizes (Cohen’s d) asso-
ciated with both of these pairwise comparisons indicated a small 
effect (Cohen, 1988). No other pairwise comparisons were 
statistically significant. Figure 1 displays these results, and the 
statistically significant linear trend, F(1, 178) = 9.32, p = 0.003, 
ηp

2 = 0.05, indicating a positive change from time 1 to time 4 can 
also be seen. To illustrate this positive change, one selected stu-
dent’s responses from times 1 and 4 are reproduced below.

Time 1 response: “Developmental processes in the embryo 
occur in a head to tail manner the same way a child grows 
more so in height than in width.” (Coded 1)

Time 4 response: “Digestion of food is like making mulch. First 
the tree must be cut down into logs (mechanical digestion) 
and then ground into much smaller pieces for its use as mulch 
(chemical digestion).” (Coded 4)

TABLE 3.  Descriptive statistics for primary variables

Measure Mean (SD) Median Min.–Max.

Exam 1 percent 87.12 (10.04) 88.46 40.00–100.00
Analogical reasoning 5.72 (1.77) 6.00 1–8
KOC 30.94 (4.69) 31.00 13.00–40.00
Analogy 1 2.73 (1.61) 3.00 0–5
Analogy 2 2.98 (1.57) 4.00 0–5
Analogy 3 3.08 (1.53) 4.00 0–5
Analogy 4 3.15 (1.49) 4.00 1–5
Analogies (total) 11.93 (4.56) 13.00 2–19
Post analogical reasoning 5.78 (1.83) 6.00 0–8
Post KOC 30.79 (4.79) 31.00 17.00–40.00
Final course grade percent 89.91 (8.79) 91.79 50.40–102.75

1The Greenhouse-Geisser correction was applied to this test given a significant test 
of sphericity.
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In sum, findings not only support that students could gen-
erate analogies related to course content, but also that stu-
dents’ generated-analogy quality improved throughout the 
intervention.

Research Question 2: Analogy Quality and Analogical 
Reasoning
The second research question addressed whether students’ 
overall generated-analogy quality positively predicted post-in-
tervention analogical reasoning, after controlling for pre-inter-

vention analogical reasoning. We hypothesized that it would, 
and this hypothesis was supported through multiple linear 
regression analysis with Bonferroni-adjusted significance test-
ing; F(2, 176) = 33.29, p < 0.001, R2 = 0.30. Overall generat-
ed-analogy quality was a significant predictor (standardized B = 
0.22, t = 3.43, p = 0.002) of post-intervention analogical rea-
soning, above and beyond pre-intervention analogical reason-
ing, which was also a significant predictor (standardized B = 
0.45, t = 6.93, p < 0.001). Overall generated-analogy quality 
accounted for an additional 4.70% of the variance in students’ 

TABLE 4.  Correlations among primary variables

1 2 3 4a 5a 6a 7a 8 9 10

1. Exam 1 percent
2. Analogical reasoning 0.22**
3. KOC 0.18* 0.08
4. Analogy 1a 0.17* 0.17* 0.04
5. Analogy 2a 0.19* 0.14 0.12 0.31**
6. Analogy 3a 0.17* 0.10 0.09 0.31** 0.47**
7. Analogy 4a 0.11 0.19* 0.02 0.25** 0.39** 0.45**
8. Analogies overall 0.28** 0.23** 0.13 0.67** 0.74** 0.74** 0.70**
9. Post analogical reasoning 0.13 0.50** 0.10 0.16* 0.18* 0.22** 0.28** 0.33**
10. Post KOC 0.34** 0.05 0.59** 0.06 0.19* 0.17* 0.13 0.22** 0.15*
11. Final course grade percent 0.82** 0.20** 0.23** 0.19* 0.23** 0.18* 0.18* 0.30** 0.11 0.40**

aCorrelations with these variables are Spearman’s rho coefficients because of their ordinal scale.
*p < 0.05.
**p < 0.01.

FIGURE 1.  Estimated marginal means of students’ generated-analogy quality at each intervention time point.
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post-intervention analogical reasoning scores beyond pre-inter-
vention analogical reasoning scores (R2 change = 0.047, p < 
0.001). Thus, even after controlling for pre-intervention ana-
logical reasoning, students’ generated-analogy quality posi-
tively predicted post-intervention analogical reasoning.

Research Question 3: Analogy Quality and Course 
Performance
The third research question sought to determine whether over-
all generated-analogy quality positively predicted final course 
grade after controlling for prior course performance (exam 1 
grade). We hypothesized that it would, because students able to 
create higher-quality analogies theoretically have a deeper 
understanding of the course content, which should translate to 
a higher course grade. Multiple linear regression analysis with 
Bonferroni-adjusted significance testing did not support this 
hypothesis. Only exam 1 (standardized B = 0.82, t = 19.29, p < 
0.001) statistically significantly predicted final course grade; 
F(1, 177) = 372.21, p < 0.001, R2 = 0.68. Overall generat-
ed-analogy quality was not a significant predictor of final course 
grade (standardized B = 0.07, t = 1.60, p = 0.22). To further 
explore this null result, we calculated change in analogy scores 
(from time 1 to time 4) to see whether this change score pre-
dicted course performance. Regression analysis revealed this 
change score also did not predict final course grade above and 
beyond exam 1 grades (standardized B = 0.03, t = 0.63, p = 
0.53). Regarding research question 3, results showed that gen-
erated-analogy quality did not predict final course grade above 
and beyond prior course performance.

Research Question 4: Analogy Quality and KOC
The fourth research question investigated whether reported 
KOC increased from pre- to post-intervention, and if so, whether 

there was an interaction with generated-analogy quality. We 
hypothesized that KOC would increase from pre- to post-inter-
vention and that the increase would be more pronounced for 
students with higher overall generated-analogy quality. Results 
from an 2 × 4 mixed-design ANOVA with Bonferroni corrections 
for family-wise error did not support this hypothesis. Students 
were split into four groups based on their percentile score for 
their total generated analogies score (25th, 50th, 75th, and 
100th percentiles). These four groups were the independent 
variable in a 2 × 4 mixed-design ANOVA. Results indicated that 
students’ average reported KOC did not increase from pre- to 
post-intervention; there was no main effect for time; F(1, 175) 
= 0.009, p = 0.92, ηp

2 = 0.000. Further, there was no main effect 
for group, F(3, 175) = 2.54, p = 0.06, ηp

2 = 0.042; and no time × 
group interaction, F(3, 175) = 0.85, p = 0.47, ηp

2 = 0.014. Figure 
2 displays these results.

To further explore the potential relationship between stu-
dents’ generated-analogy quality and their KOC, we posed a 
post hoc, slightly modified version of the fourth research ques-
tion that mimicked the format of research questions 2 and 3. 
Specifically, we used multiple regression to determine whether 
generated-analogy quality predicted post-intervention KOC 
after controlling for pre-intervention KOC. Results from this 
analysis (with Bonferroni-adjusted significance testing) indi-
cated that students’ overall analogy quality did predict post-in-
tervention KOC, above and beyond pre-intervention KOC; F(2, 
176) = 52.12, p < 0.001, R2 = 0.37. Specifically, overall analogy 
quality (standardized B = 0.14, t = 2.35, p = 0.04) accounted for 
an additional 2% (p = 0.02) of the variance in post-intervention 
KOC beyond pre-intervention KOC (standardized B = 0.57, t = 
9.53, p < 0.001).

To summarize, regarding our fourth research question, 
results indicated that students’ KOC did not increase from 

FIGURE 2.  Estimated marginal means of KOC scores at pre- and post-intervention, grouped by quartiles of students’ overall generated 
analogies scores.
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pre- to post-intervention, and thus, there was no interaction 
with generated-analogy quality. However, exploratory regres-
sion analysis showed that analogy quality predicted post-inter-
vention KOC above and beyond pre-intervention KOC and 
explained an additional 2% of the variance in post-intervention 
KOC.

DISCUSSION
This study addressed four major gaps in the literature. First, it 
was one of the first to investigate whether students could gen-
erate their own analogies, and if so, whether they could get 
better at doing so. We found that students could generate con-
textualized analogies and improve the analogical complexity of 
their analogies over time. Related to the first gap, the second 
gap this study helped address was the dearth of empirical work 
that incorporated student-generated analogies as data. No cod-
ing framework existed (before our study) to code generated 
analogies for analogical complexity based on Gentner’s struc-
ture-mapping theory of analogy (Gentner, 1983). Future 
researchers can now leverage our developed coding scheme 
(Supplemental Appendix B) as a tool to further investigate the 
quality of analogies. The coding framework can surely be 
refined, but serves as an initial tool. Third, this study is one of 
few to investigate analogical reasoning within a representative 
educational context (i.e., a postsecondary biology course). Our 
data show that generating analogies contextualized to an 
authentic biology course is possible and predicts students’ ana-
logical reasoning and KOC. This latter relationship speaks to the 
fourth major gap in the literature addressed by this study. 
Researchers have called for analogical reasoning to be investi-
gated in relation to other individual-difference variables 
(Dumas et al., 2013), and our data showed that, although stu-
dents’ KOC did not change from pre- to post-intervention, gen-
erated-analogy quality did positively predict post-intervention 
KOC above and beyond pre-intervention KOC. Detailed discus-
sions of the results pertaining to each research question follow.

Students’ generated-analogy quality increased throughout 
the intervention, possibly because of the increased exposure to 
and practice with content-based analogies. One might argue the 
observed small effect size was caused by maturation, such that 
learners got better at generating analogies because they had 
become more and more familiar with the course content. This 
explanation is unlikely, however, because students generated 
analogies using new (recently covered) content at each activity. 
Thus, little maturation could have occurred with each new con-
tent unit. One might also point to a testing effect (i.e., students 
got better at analogies because they had repeated practice with 
them) to explain the effect size, and in a sense, a testing effect 
was exactly what we targeted in the intervention. Indeed, the 
intention was to teach students to generate analogies and to get 
better at doing so. Repeated practice with analogies was in fact 
one of the core components of the intervention. The primary 
intervention goal appears to have been reached.

Analogies created at time 4 were higher quality than those 
created at time 1. Although students did not receive individual 
feedback on their generated analogies, they were able to com-
pare their work with the instructor-generated analogies. It is 
likely that the more exemplar analogies they interacted with 
and the more practice they had generating their own analogies, 
the better they became at generating higher-quality analogies. 

This finding is encouraging evidence that one goal of the inter-
vention was met. Hopefully, these students continued to prac-
tice creating analogies with other biology content and were able 
to transfer the learning strategy to other courses. Another pos-
sible explanation for these findings is that the focus on meta-
cognitive conditional knowledge (at times 3 and 4) was more 
impactful on students’ generated-analogy quality compared 
with a focus on declarative and procedural knowledge (at time 
1). While this explanation remains possible, we argue that, in 
fact, a combination of declarative, procedural, and metacogni-
tive conditional knowledge supported by ample practice was 
necessary before any potential benefit of the intervention pro-
gram could manifest. Thus, we view the increased performance 
at time 4 as a result of the combined effects of the intervention 
as a whole, rather than reflecting the impact of individual com-
ponents. Such an explanation is also supported by prior strat-
egy instruction research (Brown et  al., 1996; Dignath and 
Büttner, 2008; Donker et al., 2014). Still, future research should 
investigate the efficacy of analogies interventions that focus 
exclusively on one of these intervention components to deter-
mine whether a pared-down version of this intervention may 
yield equivalent or even stronger effects. Although this study 
helped push research on analogies into more-authentic learning 
environments, future research should assess delayed effects of 
this and similar analogies interventions to determine whether 
students maintain and/or transfer their newly learned strategy. 
Maintained use and quality of generated analogies are under-
studied outcomes of analogical reasoning research and of strat-
egies research more broadly. In the short-term, these results 
support prior research (Alexander et  al., 1989; Richland and 
McDonough, 2010; Dumas, 2017) that has found that students’ 
analogical reasoning and ability to generate their own analo-
gies is malleable.

On a related note, generated-analogy quality positively pre-
dicted analogical reasoning as measured by the vTORR. While 
the observed effect size (ΔR2 = 0.047) was smaller than we had 
hoped, it was statistically significant and shows that an out-of-
class, assignment-based intervention can help explain change 
in students’ analogical reasoning, even under strict statistical 
controls. This positive predictive relationship is encouraging 
and provides further evidence of validity for the measure (based 
on test-criterion relationships; American Educational Research 
Association et al., 2014). Theoretically, students better able to 
create analogies should reason analogically more effectively. 
This relationship appears to have been captured in the current 
data. While we are unable to determine whether the interven-
tion caused the increase in analogical reasoning, controlling for 
pre-intervention analogical reasoning lends support for poten-
tial causation. Further, if the intervention did cause an increase 
in analogical reasoning, this increase in analogical reasoning 
likely helped cause an increase in learning and, thus, course 
performance. A carefully designed future study could investi-
gate this mediation hypothesis. We would expect such a rela-
tionship to manifest, given the established relationship between 
strategy use and learning and performance (Dent and Koenka, 
2016).

Students who generate high-quality analogies should create 
more and deeper connections with the course content, and thus 
learn the material more effectively. This contention was not sup-
ported by the current data; course grades were not predicted by 
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the quality of generated analogies, after controlling for prior 
course performance. The final grade is composed of many com-
ponents, such as exams, clicker points (daily warm-up ques-
tions), and an applied laboratory section. Each of these learning 
activities require different cognitive processing (Mayer, 1996; 
Kiewra, 2005), skills, and knowledge. Given the myriad 
demands students faced in the course, it could be that one 
assignment-based analogies intervention was not powerful 
enough to explain statistically significant variance in the final 
course grade. To further uncover potential relationships between 
generated-analogy quality and learning, future research could 
employ measures of learning that are more closely aligned with 
the cognitive processing theoretically invoked by analogical rea-
soning (e.g., elaborative and organizational processing).

Finally, students’ reported KOC was no different after the 
intervention, counter to our hypothesis. We anticipated that 
repeated engagement with analogies would compel students to 
think deeply about their understanding of the content and thus 
guide them to develop their KOC. We also expected KOC to 
increase because of the conditional knowledge of analogies 
conveyed during the intervention (i.e., students would learn 
when to use the strategy, which would beget increased KOC). 
Results indicated that reported KOC did not increase, and stu-
dents’ analogy quality was irrelevant to this finding. Perhaps 
students require more practice with analogies and in more var-
ied settings, feedback about their analogies, and/or more 
explicit metacognitive training to increase KOC. Or perhaps 
training one cognitive learning strategy is insufficient to notice-
ably affect KOC. This latter explanation seems in line with pre-
vious research supporting the general monitoring skill hypothe-
sis (Schraw et  al., 1995). This hypothesis suggests that 
metacognitive monitoring depends, in part, on a learner’s 
domain-general metacognitive knowledge (Schraw and Niet-
feld, 1998). Such domain-general metacognitive knowledge 
would imply that aspects of metacognition can be conceptual-
ized as general, stable traits rather than unstable (and therefore 
easily malleable) contextualized events. The method employed 
to measure KOC could also have impacted our results. Self-re-
port questionnaires are but one method of many that can be 
used to study metacognition (Schraw, 2009). It could be that 
the measure employed in this study was not sensitive or contex-
tualized enough to detect any potential change in students’ 
KOC after intervention. Finally, these null results could have 
manifested because of insufficient instruction on when to use 
analogies. Perhaps additional, more detailed instruction is 
required on that front to produce changes in students’ KOC. 
Finally, although no difference from pre- to post-intervention 
was observed in KOC scores, a multiple regression analysis 
showed that generated-analogy quality did predict post-inter-
vention KOC above and beyond pre-intervention KOC. This 
result provides some empirical evidence of our hypothesized 
link between generating analogies and invoking KOC, but more 
research is needed to further disentangle this relationship. We 
still do not know, for example, if the intervention caused stu-
dents to generate higher-quality analogies, which in turn com-
pelled them to engage and assess their KOC, or if their existing 
(pre-intervention) tendencies to engage and assess KOC bene-
fited their generated-analogy quality. This distinction would be 
an important contribution to both metacognitive and analogical 
reasoning theory. Future studies should explore how interven-

tion factors might impact metacognitive awareness broadly and 
KOC specifically.

The results of this study reveal a promising confirmatory pic-
ture: It appears possible to teach a cognitive learning strategy to 
students in a real university course. The study also shed light on 
the relationship between analogy quality and KOC—a response 
to the call to investigate analogical reasoning as it relates to 
other individual-difference constructs (Dumas, 2017).

Taken together, the findings of the current study suggest that 
it is possible to teach analogies as a cognitive learning strategy 
to students within their normal courses of study and without 
any intensive materials or significant time investment (each 
activity only took students about 5–10 minutes to complete, on 
average). Future research should extend and enhance similar 
interventions in at least four ways. First, future interventions 
should use a true quasi-experimental or experimental design. 
Doing so will simultaneously preserve ecological validity and 
bolster internal validity of the study. Second, future interven-
tions should vary the dosage and intensity of the intervention to 
help determine optimal intervention characteristics (e.g., de 
Boer et al., 2014; Schraw and Gutierrez, 2015). Third, future 
research should use delayed assessments of strategy use and 
quality of strategy use. The gains observed in analogy quality 
were demonstrated within a relatively short time frame (about 
2 months) and were observed during intervention. It would be 
important to know if these gains were sustained, increased, or 
decreased after 2 weeks, 1 month, or even 3 months post-inter-
vention. Finally, though analogical reasoning is touted as an 
important cognitive process invoked in many domains and top-
ics (Alexander and Kulikowich, 1991; Alexander, 2019), future 
research should explicitly study the effectiveness of generating 
analogies in different domains, perhaps using a within-subjects 
design. It is possible that generating analogies is more beneficial 
for some academic domains. Teasing out the domain-specificity 
of this cognitive learning strategy would benefit researchers and 
practitioners in their efforts to promote strategy use.

CONCLUSIONS
In the current study, students in an authentic STEM classroom 
benefited after an analogies intervention. As practitioners and 
researchers respond to calls to increase achievement and reten-
tion within STEM courses, they can leverage these results to pro-
mote learning and analogical reasoning within authentic learn-
ing environments. Students can learn to generate analogies 
using course content, and they can improve the quality of their 
generated analogies over time. The current work also begins to 
uncover the relationships among analogical reasoning and other 
constructs. Although analogical reasoning was unrelated to KOC 
in these data, we encourage future researchers to re-examine 
this relationship with varied methods and measures.
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