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ARTICLE

ABSTRACT
Undergraduate biology students’ molecular-level understanding of stochastic (also re-
ferred to as random or noisy) processes found in biological systems is often limited to 
those examples discussed in class. Therefore, students frequently display little ability to 
accurately transfer their knowledge to other contexts. Furthermore, elaborate tools to as-
sess students’ understanding of these stochastic processes are missing, despite the funda-
mental nature of this concept and the increasing evidence demonstrating its importance 
in biology. Thus, we developed the Molecular Randomness Concept Inventory (MRCI), an 
instrument composed of nine multiple-choice questions based on students’ most prev-
alent misconceptions, to quantify students’ understanding of stochastic processes in bi-
ological systems. The MRCI was administered to 67 first-year natural science students in 
Switzerland. The psychometric properties of the inventory were analyzed using classical 
test theory and Rasch modeling. Moreover, think-aloud interviews were conducted to en-
sure response validity. Results indicate that the MRCI yields valid and reliable estimations 
of students’ conceptual understanding of molecular randomness in the higher educational 
setting studied. Ultimately, the performance analysis sheds light on the extent and the lim-
itations of students’ understanding of the concept of stochasticity on a molecular level.

INTRODUCTION
Analyzing students’ understanding is essential to gain insights into their conceptual 
framework in order to understand where they struggle to comprehend the concepts 
taught. Despite other formative assessment techniques, concept inventories constitute 
an ecological yet powerful tool to estimate students’ understanding of multiple topics 
(Klymkowsky and Garvin-Doxas, 2020). Concept inventories generally comprise a set 
of multiple-choice questions aiming at unveiling the scientifically incorrect conceptions 
held by students, using distractor items (wrong items) to yield an estimate of the deep-
ness of the understanding of a concept or principle. Since the first publication of an 
impactful concept inventory in biology on the concepts of diffusion and osmosis 
(Odom and Barrow, 1995), many more such inventories have been developed (for an 
overview, see: Gregory; 2009; Furrow and Hsu, 2019). However, even though most of 
these inventories are designed for high school students, several studies report that 
even university undergraduate natural science students frequently struggle with fun-
damental concepts in biology, including randomness, evolution, and energy (Couch 
et al., 2015; Champagne Queloz et al., 2016; Fiedler et al., 2017; Gauthier et al., 2019).

An early attempt to assess undergraduate students’ understanding of biological 
concepts was achieved with the Biology Concept Inventory (BCI; Garvin-Doxas and 
Klymkowsky, 2008), which enabled the authors to identify misconceptions in a broad 
range of biological topics. Consistent with earlier findings, they discovered that stu-
dents often misunderstood the role of stochastic (random) processes in biological sys-
tems (e.g., Ross et al., 2010). Student replies to questions on the role of randomness 
often appeared to be learned by rote and lacked deep understanding (Garvin-Doxas 
and Klymkowsky, 2008).
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However, the BCI was intended to survey students’ miscon-
ceptions about biological processes in a more general manner 
rather than mapping out the details of students’ thinking about 
stochastic processes (Klymkowsky et  al., 2003). In fact, only 
three questions from the BCI specifically tackled stochasticity in 
molecular systems and can therefore be used as a measure to 
analyze the understanding of the former (Klymkowsky et al., 
2003). When the BCI was implemented in first-year undergrad-
uate biology curricula in various Swiss universities, the results 
revealed that students frequently struggle with fundamental 
biological concepts and that the concept of randomness remains 
challenging in higher education (Champagne Queloz et  al., 
2016).

A recent study by Gauthier et al. (2019) yielded similar 
results by assessing students’ comprehension of the random 
nature of molecular processes using the Molecular Con-
cepts Adaptive Assessment (MCAA). The MCAA constitutes 
a valuable instrument due to its adaptivity based on stu-
dents’ answers. However, using the MCAA to identify mis-
conceptions regarding randomness remains limited, as a 
significant part of the instrument consists of true-false 
statements and subsequent multiple-choice questions, 
often without correct answering possibility. Moreover, the 
fullness of the concept of randomness is only partially 
acknowledged, and statistical evaluations of the instru-
ment’s validity and reliability are missing. Thus, the MCAA 
only partially assesses students’ understanding of stochas-
ticity in molecular biology.

At the same time, it is worth noting that the important role 
of stochastic processes has become more apparent, arising in 
part from single-cell fluorescence, RNA sequencing, and related 
studies. These include monoallelic expression in diploid somatic 
cells (Reinius and Sandberg, 2015) and transcriptional and 
translational bursting (Ozbudak et al., 2002; Kærn et al., 2005). 
While the concept of stochasticity has gained importance in bio-
logical research and education, adequate tools to assess stu-
dents’ understanding of this concept are missing. Given that, we 
set out to develop a set of questions that explicitly focuses on 
stochastic molecular processes.

Therefore, we developed the Molecular Randomness Con-
cept Inventory (MRCI) and assessed the validity and reliabil-
ity of undergraduate students’ responses when taking this 
test, using complementary statistical approaches. As course 
content often depends on lecturers’ topic preferences, the 
MRCI focuses on (stochastic) randomness without the 
requirement of other biological concepts having been cov-
ered. The MRCI consists of nine multiple-choice items explor-
ing the boundaries of the students’ understanding of this 
concept and may help educators in higher education to 
assess their students’ knowledge and learning processes to 
design course materials addressing these topics. We adminis-
tered the MRCI to a cohort of first-year natural science stu-
dents with the intention of elucidating how well the students 
understand the concept of stochasticity on a molecular level 
and whether there are specific contexts in which the concept 
of randomness is more challenging to students. Furthermore, 
we tested biology doctoral students to examine the concept 
inventory’s upper limit and interviewed undergraduate stu-
dents to analyze the response validity.

METHODS
Development of the MRCI
The MRCI was developed as part of an institutional initiative at 
ETH Zurich to advance teaching in higher education, namely 
the Future Learning Initiative (FLI). The development of the 
MRCI was stepwise and similar to the Randomness and Proba-
bility assessment instruments in the contexts of evolution and 
mathematics (Fiedler et al., 2017). In agreement with the guide-
lines set out by Treagust (1988), the process comprised 1) build-
ing and validating a concept map by collecting propositional 
knowledge statements and students’ misconceptions, 2) faculty 
expert review and validation, 3) a pilot study with natural sci-
ence undergraduate students, 4) item refinement and revision, 
5) a second faculty expert review, 6) concept inventory admin-
istration, and 7) assessment analysis and student interviews. 
Test development and administration followed the Standards 
for Educational and Psychological Testing (American Educational 
Research Association, American Psychological Association, and 
National Council on Measurement in Education, 1999). A more 
extensive elaboration of the individual steps follows in the sub-
sequent paragraphs.

Concept Map and Faculty Review
The findings on students’ thinking from various studies were 
taken into account to examine the concept (Odom, 1995; 
Garvin-Doxas and Klymkowsky, 2008; Champagne Queloz 
et al., 2016). We extracted the naïve and incorrect conceptions 
that were reported in these publications. The compiled set of 
misconceptions, grounded in student answers that were either 
directly collected or indirectly described through test answers, 
was used to establish a concept map for the concept of “ran-
domness in biological systems on a molecular level” through 
thematic analysis and subsequent clustering of emerged themes 
(Braun and Clarke, 2006). The concept map that resulted was 
used to define the concept inventory’s content (Figure 1). The 
first and second authors (S.T. and K.K.) of this study worked 
collaboratively on establishing this concept map, and the resid-
ual authors critically analyzed and commented on the map. In 
line with this, the concept map indicates the propositional 
knowledge statements, further describing students’ incorrect 
assumptions and conclusions. Four subconcepts crystallized as 
central factors influencing students’ understanding. These fac-
tors concern 1) the effectiveness of random processes; 2) the 
stochastic action of molecular processes; 3) the random behav-
ior of molecules; and 4) the molecule-intrinsic thermal motion, 
which eventually leads to the random movement of molecules 
and atoms.

Based on this concept map, we formulated four multi-
ple-choice questions in addition to three adapted questions 
from the BCI (items 17, 18, and 25; Garvin-Doxas and Klym-
kowsky, 2008), one from the Molecular Biology Capstone 
Assessment (MBCA: item 12; Couch et al., 2015), and one from 
the Osmosis and Diffusion Conceptual Assessment (ODCA: 
item 3; Fisher et al., 2011), which appeared to be of particular 
importance for measuring the understanding of the concept of 
randomness. The distractors used in these questions aim to 
identify commonly held misconceptions and provide evidence 
for where students’ understanding of stochastic processes in 
biological systems can be improved and extended. The contexts 
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range from the movement of proteins and RNA across barriers 
(i.e., the nuclear envelope) and their interactions with the 
nuclear cytoplasm as well as the membrane macromolecules 
they encounter, to the movement of neurotransmitters in the 
synaptic cleft upon synaptic firing. Three biology faculty experts 
internal to the research team assessed each question’s accuracy, 
and the items were revised to remove ambiguous formulations 
or ambiguous answer options.

As the MRCI was validated in German, the questions were 
developed in this language. For the BCI, the translated version 
of the questions was taken (Champagne Queloz et al., 2017). 
The items from the MBCA (Couch et al., 2015) and the ODCA 
(Fisher et al., 2011) were separately translated from English to 
German. All MRCI items are designed to preempt the measure-
ment of unintended constructs (e.g., linguistic knowledge) as 
effectively as possible.

Each MRCI item consists of a question with four possible 
answers, of which three are distractors, and only one is correct. 
For the analysis, correct answers were rated with 1 point and 
wrong answers with no points. Mapping the MRCI items on the 
concept map highlights that all major subconcepts are directly 
or indirectly covered. A detailed overview of the, knowledge 
propositions and the MRCI items is shown in the specification 
table (Table 1).

Pilot Study, Item Refinement, and Second Faculty Review
After the approval of the university’s ethics committee to con-
duct all studies described herein, the first version of the MRCI 
was used in a pilot study. The participants were 21 second-se-
mester undergraduate natural science students (52.4% 
female, 47.6% male, 0% nonbinary; M = 20.1 years, SD = 1.1 
years) of a high-ranked Swiss university. Difficulty indices 
were calculated for the individual items (Blood and Budd, 
1972; Padua and Santos, 1997). Additionally, discrimination 

indices were calculated as the correlation between the item of 
interest with the whole test score (Revelle, 2021). We found 
no item to be very easy or very difficult. Discrimination indi-
ces revealed that two items had to be revised. After refining 
these items, they were again discussed with biology experts 
regarding correctness and clarity. An example of such a revi-
sion is given in Table 2.

MRCI Implementation and Analysis
Participants.  The refined (second-generation) concept inven-
tory was administered to 74 first-semester natural science stu-
dents (71.6% female, 28.4% male, 0% nonbinary; M = 19.7 
years, SD = 1.6 years) at the same Swiss university where the 
pilot study was conducted. The students studied health science 
and technology (86.5%) or medicine (13.5%). Of the partici-
pants, 62.2% had selected a science, technology, engineering, 
and mathematics (STEM) major in high school. In line with the 
norms for educational research practice in European contexts, 
socioeconomic status or diversity of race was not assessed (for 
recent examples, see Fiedler et al., 2017; Jaimes et al., 2020). 
The requirement for participation was being enrolled in a par-
ticular fundamental biology class. Participation was voluntary, 
there was no compensation, and the study’s performance did 
not impact students’ studies.

Materials.  To measure the convergent validity of the MRCI, in 
addition to the validity measures provided by faculty experts’ 
reviews, we assessed students’ self-efficacy in this specific 
topic separately. Self-efficacy regarding performance was pre-
viously shown to correlate strongly with actual performance 
(Richardson et al., 2012). Thus, this correlation measure was 
taken as an approximation for estimating the convergent 
validity (Tipton and Worthington, 1984; Weber et al., 2015; 
Krabbe, 2017). For that, we used an additional four-item 

FIGURE 1.  Concept map concerning randomness in molecular systems, including knowledge propositions for each subconcept.
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questionnaire on a five-point Likert scale (from 1= strongly 
disagree to 5 = strongly agree, Cronbach’s α = 0.84), which 
was weakly adapted from Glogger-Frey et  al. (2017). An 
exemplary item from the questionnaire was: “I am confident 
that I can answer questions about molecular motion.”

Procedure.  The test was administered as part of another study, 
which investigated the effects of narratives on understanding 
fundamental biological concepts (Tobler et  al., 2022b). The 
impact of two different intervention materials on students’ 
understanding was compared using, in part, the MRCI. The 
study aimed to examine whether undergraduate students learn 
concepts better when they are presented in an expository text as 
typically found in textbooks (study group A) or as narratives, in 
which the same contents are embedded in the historical context 
of scientists who originally researched this topic (study group 
B). The participants were randomly assigned to read one of the 
two text materials and were instructed to answer test questions 
to assess their performance. The time for answering the ques-
tions of the MRCI in this on-site study was unlimited, and stu-
dents were asked to work alone. They were instructed to select 
the answer that best fit the solution. Seven participants were 
excluded due to early submission (n = 1), a lack of effort (n = 
1), or insufficient intervention language skills (n = 5; according 
to Melby-Lervåg and Lervåg, 2014). This procedure resulted in 
a final data set of 67 participants (70.2% female, 29.8% male, 
0% nonbinary; 59.7% STEM background). Of these students, a 
subset of 24 participants (83.3% female, 16.7% male, 0% non-
binary; 70.1% STEM background) were recruited to retake the 
test 3 months after the first testing to investigate test–retest reli-
ability.

Statistical Analyses.  All statistical analyses were performed in 
the R software environment (v. 4.2.1; R Core Team, 2022). The 
applied R packages are listed in Appendix C in the Supplemen-
tal Material. To analyze the subgroup differences (study group 
and educational background, respectively), we performed anal-
yses of variance. As a proxy for convergent validity (Nunnally, 
1967), the relationship between students’ performance and 
self-reported efficacy was investigated by calculating Pearson’s 
correlation coefficient (Tipton and Worthington, 1984; Krabbe, 
2017). For an in-depth analysis, the reliability of MRCI and its 
items were analyzed using two complementary approaches: 
classical test theory and item response theory (IRT; Bechger 
et al., 2003). Therefore, Cronbach’s α (Cronbach, 1951) values 
and McDonald’s omega (McDonald, 1999) were calculated, 
and a Rasch model (Bond and Fox, 2007; Mair and Hatzinger, 
2007) was built for the IRT approach. Students’ conceptual 
understanding in different contexts was investigated by looking 
at the response patterns of the individual questions of the MRCI. 
The test–retest reliability was determined by calculating Pear-
son’s correlation score for the performance results at the two 
time points (Vilagut, 2014). Additionally, a Bland-Altman plot 
was drawn (Altman and Bland, 1983) to graphically examine 
the test–retest reliability of the findings. A latent class analysis 
(LCA; Linzer and Lewis, 2011) was performed to identify sub-
groups based on students’ response patterns. The best-fitting 
model was selected based on a context-dependent fit indices 
comparison, taking into account the individual measures’ lim-
itations (see Nylund et al., 2007; Yang, 2006) for the specific 
situation. Eventually, the students’ response patterns in the dif-
ferent latent classes and for the different subconcepts were 
examined.

TABLE 1.  Subconcepts and particular, knowledge propositions and the corresponding MRCI item

Subconcepts and knowledge propositions Item numbera

Subconcept A: Molecular processes do not have a goal.
  A1: Consequences of chemical reactions cannot actively be determined. R2c
  A2: Molecular dissociation can be driven by collisions with other molecules. R2a, R2b, R2d
  A3: Stochastic processes can be effective. R2b, R5d, R8a

Subconcept B: Molecules do not make active decisions.
  B1: Molecules do not actively search for an interaction partner. R3a, R7a, R7b, R8b
  B2: Molecules and their characteristics do not actively attract or repel other molecules over 

long distances.
R3b, R5a, R5b, R6d, R8d, R9c

  B3: Molecules and molecular machines do not make active decisions to produce an outcome. R1a, R1b, R4a, R4c, R5c, R6a, R6b, R9a, R9b
  B4: There is no active molecular pumping mechanism in the cytoplasm. R3c, R7c, R8c

Subconcept C: Thermal motion causes random movement of atoms and molecules.
  C1: Individual molecules move without any direction (Brownian motion). R3d, R5d, R6c, R7d, R8a, R9d
  C2: Brownian motion also happens if there is no gradient. R4b
  C3: There is not one perfect fit for substrate and enzymes. R1c, R1d

aItems R1, R2, and R3 are adapted from Garvin-Doxas and Klymkowsky (2008: questions 17, 18, and 25), item R4 from Fisher et al. (2011: question 3), and item R5 
from Couch et al. (2015: question 12). Letters a to d indicate the answer option.

TABLE 2.  Exemplary revision of RCI item R5, answer b

Before revising After revising

Although an incorrect amino acid residue is bound to the tRNA 
molecule, it is attracted to the ribosome, and the incorrect amino 
acid is incorporated into the protein.

Even if incorrect amino acid residues are bound to the tRNA molecule, 
such molecules are actively attracted to the ribosome by the 
cytosol, and the wrong amino acid is incorporated into the protein.
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MRCI Translation and Translation Validation
The MRCI questions were translated from German to English 
using the DeepL software environment (v. 3.1.133440). The 
correctness of the translation was manually examined, and 
minor issues were adjusted. The translation was validated by 
five graduate students in various disciplines who were fluent in 
both languages. These students were given first the English and 
then the German versions of all the questions, one at a time. 
After having seen the English version, they were instructed to 
give feedback on the translation in terms of wording and 
expressions used. Ignoring the correctness of the answer, each 
participant selected the same solution in the German and 
English versions for each question. These results indicate that 
the German and the English versions of the MRCI might be 
directly comparable and, thus, might measure the same con-
structs. Furthermore, comments regarding the translation given 
by these participants were integrated into the English version of 
the MRCI. The final products of this concept inventory develop-
ment process (i.e., the MRCI in English and German) are 
attached in Appendix A of the Supplemental Material. In all 
studies described herein, only the German version has been 
applied.

MRCI Limit Examination
To investigate the upper limits of the assessment, we recruited 
biology graduate students to participate in the study. The par-
ticipants were 34 German-speaking doctoral students (41.2% 
female, 58.8% male, 0% nonbinary; age: M = 28.1, SD = 2.3 
years) at the same Swiss university, who arrived from 16 dif-
ferent universities; 97.1% (n = 33) obtained their master’s 
degrees in Europe, 57.6% of those (n = 19) in Switzerland. 
The requirement for voluntary participation was fluency in the 
test language (i.e., German). Three vouchers from a local gro-
cery store valued at 20 Swiss francs were raffled off among all 
participants.

The doctoral students were invited by email to participate 
online and were asked work alone to answer the test questions. 
An outlier analysis was performed before the data analysis. We 
excluded eight participants due to performance score outliers 
(n = 1), implausibly short time spent on the test (n = 4), and 
statistical time outliers (n = 3). The final data set consisted of 
26 participants (26.9% female, 73.1% male, 0% nonbinary; 
age: M = 27.3, SD = 2.3 years).

Student Interviews and Response Validity
To examine the response validity of the MRCI, we invited first-
year natural science students to participate in an interview 
study in which their reasoning when answering the test ques-
tions was assessed. The interview process was designed accord-
ing to the guidelines for cognitive laboratory interviews (Leigh-
ton, 2017; Willis, 2005), which aim to investigate whether 
students understand the test materials as they were intended 
and prepared.

Participants.  The participants were eight first-year natural sci-
ence students of the same university (62.5% female, 25.0% 
male, 12.5% nonbinary; 37.5% STEM major in high school; 
25% fluent second language speakers, 75% German as 
first-language speakers). An a priori informative power analysis 
indicated a necessary sample size of up to 10 participants 

(Creswell and Poth, 2016; Omona, 2013). The requirement for 
eligibility was to be inscribed to a specific first-year introductory 
biology course. Participation was voluntary and not coupled 
with passing the course.

Materials.  Whereas the MRCI was used to assess understand-
ing of the concept of molecular randomness, the participants 
also had to indicate on a four-point Likert scale for each topic of 
the MRCI whether they had already studied this topic in their 
prior education.

Procedure.  Before the actual interview, students who indi-
cated an interest in participating were individually contacted 
and invited to read the information sheet for participants. The 
meeting was conducted using Zoom. Audio and video files were 
recorded for subsequent transcription of students’ answers 
during the interview. For the interview, students were informed 
about the overall procedure, solved a practice exercise with the 
interviewer, and then solved the MRCI alone. For each question, 
they were asked to explain why they selected or deselected a 
specific answer option. In the end, students indicated their 
prior experience in education with the covered topics and 
answered a few questions used for descriptive statistics. Partici-
pation was compensated with a voucher for 10 Swiss francs 
from a local grocery store. The exact wording of the instruction 
during the interview is presented in Appendix D1 of the Supple-
mental Material.

Coding and Statistical Analyses.  The registered reports were 
analyzed grounded in the question feature-coding analysis 
model (Willis, 2015). This model focuses on the coded rating of 
verbal data, emphasizing the individual test items. Verbal 
reports were categorized as 1) comprehension of the question, 
2) retrieval from memory, 3) judgment of retrieval, and 
4) response (Leighton, 2017; Tourangeau et al., 2000). Subse-
quently, the data were aggregated following the suggested pro-
cedure by Creswell and Creswell (2005). A more detailed over-
view of the analysis protocol and the coding scheme is available 
in Appendices D2 and D3 of the Supplemental Material. Perfor-
mance and questionnaire data were descriptively assessed.

RESULTS
Statistical Analysis of the MRCI
Descriptive Statistics.  The test performance results did not 
show any significant main effects of the study group A or B, F(1, 
63) = 0.009, p = 0.925, or educational background, F(1,63) = 
1.784, p = 0.187. Furthermore, descriptive statistics indicate 
substantial within-group variation (Table 3 and Figure 2). Tak-
ing these findings together, we found no evidence favoring the 
hypothesis that the subgroups are statistically significantly dif-
ferent. However, subsequent equivalence testing did reveal that 
the observed effects of the comparisons are statistically not dif-
ferent from zero and not equivalent to zero, likely due to the 
small sample size; study group comparison: t(64.12) = 0.0177, 
p = 0.986; educational background comparison: t(66.31) = 
−0.496, p = 0.622 (Lakens et al., 2018). Follow-up equivalence 
Bayes factor estimation for independent samples (Heck et al., 
2019; Kelter, 2021) revealed evidence for equivalence in both 
comparisons (study group: BF01 = 7.995; educational back-
ground: BF01 = 2.985). Thus, these results indicate that the 
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groups are, in fact, similar and can be combined for further 
analyses to increase the sample size for follow-up statistical 
analyses. A detailed description of the study groups can be 
found in the Methods.

Convergent Validity Examination.  We explored the relation-
ship between the average score of the student-reported self-effi-
cacy in this topic and the individual performance on the MRCI 
as a proxy for convergent validity. A significant Pearson’s cor-
relation was found between higher self-efficacy scores and bet-
ter performance on the MRCI (r = 0.33, p = 0.0069, n = 67). 
This result confirmed that MRCI performance measures the 
understanding of random processes on a molecular scale and 
thus further supports the validity of the MRCI.

Item Difficulty, Discrimination, and Reliability Measures.  The 
item difficulty (P) was calculated by taking the average score 
per item, as the scoring was dichotomous (1 point = correct 
answer; 0 points = wrong answer). The difficulty measures 
ranged from P = 0.27 to P = 0.75 (M = 0.48, SD = 0.17; Table 
4). Following Padua and Santos (1997), no question was too 
difficult or too easy, and the results indicate a diverse range of 
item difficulty. The discrimination indices (DI), which give an 
estimate of how well a specific item can discriminate between 
high- and low-performing students, were found between 
DI = 0.28 and DI = 0.72 (M = 0.53, SD = 0.17; Table 4). In 
accordance with Blood and Budd (1972), the results show that 
no item needs to be discarded (DI < 0.2). Furthermore, the 
results indicate that most items (six out of nine) show good 
discrimination indices, thus suggesting the high validity of 
MRCI items.

The internal consistency measure of reliability of the whole 
concept inventory was calculated as α = 0.68 (95% confidence 
interval = [0.57, 0.79]). As Cronbach’s α might not always be 
the preferred method due to measure-inherent assumptions 
(for an overview, see Zinbarg et  al., 2006; McNeish, 2018), 
McDonald’s ωt value for the MRCI was calculated in a comple-
mentary approach (ωt = 0.75). The total omega ωt strives to 
describe a general factor that explains all individual question 
items together, thus yielding a more stable reliability estimate 
(Zinbarg et  al., 2006). Taking both measures together, we 
found evidence for an acceptable level of reliability of the MRCI 
in the present data set.

Rasch Model Validation.  Using the Rasch model, a person’s 
ability and the item difficulty are taken as parameters to yield 
an estimate of the probability of solving a particular item 
(Rasch, 1960). For instance, higher ability goes along with a 
higher chance of answering a question correctly. This informa-
tion can be used to build a person-item map, which allows for 
analyzing the internal structure of the questionnaire. Taking the 
empirical results from the MRCI administration into account, 
such a person-item map was plotted (Figure 3), revealing an 
even distribution of the estimated item difficulty over different 
ability ranges. Consequently, item R1 appears to be the easiest 
item, while item R7 is the most difficult. Items R5 and R8 dis-
play a similar level of difficulty. The person-parameter distribu-
tion further confirms these results, because the performance of 
most students (72.6%) was attributable to the normally distrib-
uted data around the MRCI items. Only a minor number of stu-
dents were assigned to the two groups at the minimal and max-
imal boundary of the scale (minimal boundary: 11.5% of the 
students; maximal boundary: 15.9% of the students).

For testing the fit of the Rasch model on the MRCI data, a 
Martin-Löf test was conducted. The results indicate unidimen-
sionality, χ2(19) = 6.62, p = 0.996, and thus a good Rasch model 
fit. The model fit of each item was analyzed 1) by individual 
infit and outfit scores, which represent the normalized weighted 
or unweighted values based on the data’s mean squares statistic 
(Smith et  al., 2008a); and 2) through item-specific χ2-tests, 
which compare the actual number of correct answers to an item 
to the expected number of correct answers in the same group of 
persons (Müller, 2020).

FIGURE 2.  Participants’ performance distribution in the individual subgroups of interest. Transparently colored dots indicate unique data 
points, and diamonds indicate the means of the groups. Descriptive statistics are shown in Table 3.

TABLE 3.  Descriptive statistics of the subgroup performances and 
all participants together

Subgroup
Sample 
size (n)

Mean 
(M) SD

All participants together 67 4.32 2.28
High school STEM major 40 4.60 2.20
High school non-STEM major 27 3.93 2.34
Study group A 35 4.31 2.34
Study group B 32 4.34 2.22
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Looking at the fit statistics of the individual items of the 
MRCI indicates that most items demonstrate a good fit to the 
model (Pallant and Tennant, 2007; Robinson et al., 2019; Table 
5). Reported z-scores of infit and outfit for items R3 and R5 are 
slightly out of range (i.e., outside the range of ±2.5). However, 
they do not show a significant deviation from the Rasch model 
after correcting for multiple testing as indicated by the item-spe-
cific χ2-test. Only item R1 shows a significant divergence based 
on the χ2-test statistics, potentially due to its low difficulty. In 
conclusion, the Rasch model approach’s findings agree with the 
item difficulty, discrimination, and reliability measures, indicat-
ing overall high reliability and validity of the MRCI’s responses.

Test–Retest Reliability.  The Pearson’s correlation score indi-
cates a strong and significant correlation between the partici-
pants’ performance scores comparing the two time points (r = 
0.73, p < 0.0001) and thus suggests high test–retest reliability. 
The results of the Bland-Altman plot are in line with these find-
ings and indicate that all data points lie between the limits of 
agreement (Supplemental Figure S1).

Interview Analysis and Response Validity
The average performance of students who participated in the 
interview was lower than the performance of those in the class-
room study (M = 2.25, SD = 1.28). However, when asked how 
many topics of the MRCI they recognized, the participants indi-

cated that they had already learned ∼89% of the topics on aver-
age (SD = 21%). Analyzing the aggregated codes from the 
interviews and investigating the reasons for selecting or dese-
lecting a specific answer revealed that, in 94% of all cases, stu-
dents selected either the correct answer with a correct justifica-
tion (24%) or the wrong answer due to a misconception 
regarding molecular randomness (76%). Thus, the interview 
study demonstrated strong response validity for the MRCI, as 
implied by the students’ thought processes. Descriptive plots of 
students’ MRCI performance, the indication of recognized top-
ics, and aggregated scores indicating the number of answers 
related to the randomness concept are displayed in Supplemen-
tal Figure S3. The MRCI’s question-wise analysis of topic recog-
nition and response reasoning are shown in Supplemental 
Figures S4 and S5, respectively.

Performance Analysis of the Study
The analysis of the individual item responses of the MRCI admin-
istered to the cohort of first-semester natural science students 
revealed prevalent difficulties in students’ conceptual under-
standing of molecular stochasticity in biological systems (Figure 
4). Whereas certain items were generally correctly solved (e.g., 
R1, R3, or R6), other questions were solved correctly by fewer 
than one out of three students (e.g., R2, R7, or R9). In summary, 
the results indicate that many students do not fully understand 
the concept of randomness. Moreover, it appears that under-

standing the random nature of molecular 
movements in specific contexts, for exam-
ple, the movement of the RNA–polymerase 
complex in prokaryotes (R7), is more chal-
lenging than in other contexts, such as dif-
fusion (R6). Taking these observations 
together, the results indicate individual 
performance differences.

LCA Reveals Three Subclasses in the 
Student Population.  An LCA was con-
ducted to identify subgroups based on 
individual performances. The LCA fit 
measures revealed diverging results (Table 
6). Whereas the Akaike information crite-
rion (AIC) and Pearson’s χ2 statistic indi-
cated the highest model fit with three 
classes, the Bayesian information crite-
rion (BIC) suggested only two classes. 
Despite the higher vulnerability of the AIC 
with small sample sizes (Nylund et  al., 
2007), BIC measures have been reported 
to underrate the actual number of classes 
and tend to decrease in reliability with 
unequal class sizes (Yang, 2006). Hence, 
we decided to use the three-class model 
for further analyses.

FIGURE 3.  Person-item map with item difficulty as latent dimension and person para-
meter distribution indicating participants’ ability. The latter shows a histogram of students’ 
performance on the MRCI. The location of an MRCI item on the latent dimension (black 
dot) corresponds to the expected ability at which 50% of the test takers would have solved 
the item correctly. A higher value on the latent dimension indicates a more challenging 
item. Ticks below the person parameter distribution indicate the location of the MRCI 
items on the latent dimension in relation to students’ ability and show the discriminatory 
power of the MRCI.

TABLE 4.  Item difficulty and discrimination indices of the MRCI items R1 to R9

R1 R2 R3 R4 R5 R6 R7 R8 R9

Item difficulty 0.75 0.31 0.69 0.52 0.42 0.63 0.27 0.42 0.33

Discrimination 0.28 0.49 0.67 0.47 0.75 0.63 0.36 0.36 0.72
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In the following and based on the average group performance 
in the MRCI, these three classes are denoted as “low achievers,” 
“average achievers,” and “high achievers.” Figure 5 indicates the 
subgroup-dependent probabilities of answering the different 
items of the MRCI correctly; Figure 6 splits up the response pat-
tern for the individual classes and questions of the MRCI.

The results from the LCA show three very distinct response 
patterns: While students in the high-achieving group solved 
most questions correctly, they only seemed to struggle with 
items R7 and R8. In contrast, the average-achieving students 
answered only a few questions correctly (i.e., R1, E3, or R6) 
and struggled with the other questions. Interestingly, there is 
often no uniform response distribution that would indicate a 
random answering behavior. Instead, most students actively 
selected one specific answer containing a distractor, indicating 
that this group of students holds a particular misconception 
(e.g., R2 answer a or R7 answer b). In contrast to these two first 
subgroups, the low-achieving students show very different per-
formance behavior. Similarly, item R1 was solved correctly by 
most of the students. However, all other items were solved cor-
rectly only by a minority or not at all, as in items R5 or R9. 

Intriguingly, most students in the low-achieving group fre-
quently selected the misconception, which was prominent in 
the average-achieving group, yet to a lower extent. For instance, 
for item R2, only 21% of the high-achieving students chose 
answer option a, whereas more than double as many students 
in the average-achieving group and around two-thirds of all stu-
dents in the low-achieving group selected this answer. A similar 
pattern is detectable when looking at items R8 or R9.

However, analyzing the individual questions in isolation 
might obscure certain patterns, considering that the items con-
tain distractors concerning various misconceptions (Table 1). 
Therefore, in a subsequent step, we looked at the response pat-
tern for all questions in relation to those subconcepts that cover 
misconceptions. This analysis does not consider subconcepts 
A3, C1, and C2, because these concepts are represented only by 
correct MRCI answers.

The relative occurrences of a misconception in the subcon-
cepts (Table 1) relative to all wrong answers in a particular class 
(low, average, and high achievers) are displayed in Figure 7. 
Although the percentages do not allow us to make statements 
regarding the frequency of misconceptions within the different 

FIGURE 4.  Response analysis of the MRCI implementation study results (n = 67). The number above each bar shows the rounded percent-
age of students who have selected this specific answer. All questions are represented in four grouped bars, whereby each of these bars 
indicates a different answer possibility in the sequence a to d.

TABLE 5.  Rasch model fit statistics

R1 R2 R3 R4 R5 R6 R7 R8 R9

z-scorea

  Infit 1.327 0.264 −2.773 0.947 −2.882 −1.866 0.968 2.109 −2.290
  Outfit 1.881 1.183 −1.868 0.156 −2.537 −1.512 1.767 1.556 −2.093

χ2 statistics
  χ2 (64) 114.509 86.211 34.295 66.176 35.167 42.442 105.166 87.809 34.756

  p-valueb <0.001* 0.034 0.999 0.402 0.999 0.983 0.001 0.026 0.999

az-transformed (standardized) fit indices for infit (inlier-sensitive) and outfit (outlier-sensitive) measures indicate the item fit to the Rasch model. Values inside the range 
± 2.5 are generally regarded as a good fit (Pallant and Tennant, 2007; Robinson et al., 2019).
bAfter correction for multiple testing using the Bonferroni method, only the p-value for the χ2-statistics of item R1 is statistically significant and thus indicates deviation 
from the Rasch model. αadj = 0.05/df = 0.00078.
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classes, as not all subitems from all subconcepts occurred 
equally often (i.e., concept subitem A1 is only directly assessed 
by one distractor item in the whole MRCI, whereas concept sub-
item B1 is covered by four distractor items in the MRCI), the 
results from this analysis (Figure 7) enable comparisons among 
the three classes.

Subconcept A: Molecular Processes Do Not Have a 
Goal.  Distractor items concerning subconcept A, which states 
that molecular processes do not have a goal, were similarly fre-
quently chosen by students in all different classes (in case the 
question was not answered correctly). For instance, in question 
R2, 67% of the students in the low-achieving and 48% in the 
average-achieving class answered that two non-covalently 
bound molecules could only be separated through distinct pro-
cesses like chemical reactions (Figure 6). Random collisions 
with other molecules as mechanisms to separate them remain a 
less convincing solution than the distractors. Instead, students 
assume that there needs to be an active process that leads to a 
specific outcome.

Subconcept B: Molecules Do Not Make Active Decisions.  The 
analysis of subconcept B shows that students assume various 
ways molecules make active decisions. Interestingly, the choice 
of explanation differs in the three latent classes (Figure 7). No 
student of the high-achieving class selected MRCI distractor 

items implying that molecular machines make active decisions 
to produce an outcome or that molecules can actively attract or 
repel other molecules. However, some students in this group still 
believed that certain molecules search actively for interaction 
partners. Looking at the response pattern of question R7, only 
57% of the students in the high-achieving class selected the cor-
rect answer stating that faulty tRNAs arrive at the ribosome 
through random motion.

Students in the average-achieving class show a similar, yet 
more drastic, response pattern. Only 14% of this class’s students 
selected the correct answer, whereas a majority (76%) assumed 
that such faulty tRNA molecules are attracted to the ribosome. 
The response pattern of the low-achieving group also suggests 
that students believe that some active processes are necessary 
for these tRNAs to arrive at the ribosome. However, the similar-
ity in the response pattern indicates that students were poten-
tially partly guessing which answer was correct.

Similarly, in question R8, only 57% of the high-achieving stu-
dents understood that the RNA-polymerase complex arrives at 
the promotor region on the DNA by random movement and not 
by active processes. Answer possibilities that include transcrip-
tion initiation factors that search and recruit the polymerase or 
active pumping also seem likely to students. Instead, students in 
the average- and low-achieving classes believed that active pro-
cesses lead to the polymerase and the promoter region encoun-
ter. Yet, in contrast to the high-achieving group, students who 
did not answer correctly mostly assumed that some molecules 
actively search for interaction partners. Most students of the 
high-achieving class who selected the incorrect answer guessed 
a pumping mechanism. These two questions, R7 and R8, appear 
to be the most difficult ones for the high-achieving group. In 
most other questions, they understand that random processes 
lead to a particular outcome. Nonetheless, they seem to neglect 
the same underlying processes in more fundamental biological 
contexts like replication and transcription. These differences 
might point to a different level of conceptual understanding, 
which is more naïve in the low- and average-achieving groups 
and more elaborated in the high-achieving group. However, 

FIGURE 5.  LCA of the MRCI. The colored lines in the plot indicate the different classes, and the gray line shows the item difficulty for the 
nine MRCI questions. Higher values thereby indicate easier questions. The legend's percentage displays the relative number of students 
assigned to one of the three groups.

TABLE 6.  Fit results of different LCAsa

Latent class analysis AIC BIC χ2 b

LCA with 2 classes 727.13 769.02 350.95
LCA with 3 classes 717.52 781.46 358.69
LCA with 4 classes 724.05 810.04 321.02
LCA with 5 classes 731.64 839.67 223.82

aAIC and BIC indicate the goodness of the model fit. Lower values of AIC or BIC 
are preferred.
bPearson’s χ2-statistics indicate the goodness of fit of the individual LCAs to the 
model. Higher values indicate a better fit.
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FIGURE 7.  Students’ relative choice of misconceptions over the whole MRCI, grouped in the three latent classes. Small numbers above the 
bars indicate the percentage of students per class who have selected a specific distractor answer that contradicts a particular concept over 
all possible distractors. The individual bars show the subconcepts from Table 1, subdivided by the individual subitems. Subconcepts A3 and 
C1 are not shown, as they only contain correct MRCI answer options. The transparent bars indicate the relative number of wrong answers 
for each latent class.

FIGURE 6.  Performance analysis for the individual identified classes. The numbers on top of the individual bars indicate the relative 
number of students from a group that selected this answer option. Students are grouped into the three classes: “low achiever” (n = 24), 
“average achiever” (n = 29), and “high achiever” (n = 14), based on the latent class analysis. Again, all questions are represented in four 
grouped bars, whereby each of these bars indicates a different answer possibility in the sequence a to d.
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more than 40% have not reached a complete, correct under-
standing, even in the high-achieving group.

Students also assume active processes to be involved in 
bringing ions to membrane-residing ion channels. For question 
R9, 42% of the students in the low-achieving class and 41% in 
the average-achieving class chose the distractor that states that 
energy needs to be made available to recruit these ions. A bit 
less frequently, students from these two groups answered with 
a pumping mechanism or the arrival of the ions at the channels 
due to charge. None of the low-achieving students and only 
28% of the average-achieving students understood correctly 
that ions also move randomly toward the ion channel.

Consequently, in question R3, which asks the student to 
imagine an ADP molecule in a bacterial cell and how this mole-
cule might get to an ATP synthase to be completed to form an 
ATP molecule, all students in the high-achieving group selected 
the correct answer. Similarly, most students in the aver-
age-achieving class answered correctly. Only students from the 
low-achieving group seemed to not understand that ADP can 
arrive at the ATP synthase without any active processes. Instead, 
answers including an active pumping of the ADP molecule, an 
active grabbing by the ATP synthase, or the attraction due to the 
molecules’ electronegativity appear to be convincing solutions. 
Even more striking results are obtained in question R5. Asking 
how a ligand can cross the synaptic cleft, no student in the 
low-achieving class and only around half of the students in the 
average-achieving class selected the correct answer, claiming 
that a neurotransmitter does not always move in the direction 
of the receptor but can also move away from it. Instead, the 
students explain this phenomenon by relaying active processes 
like specific transport proteins or charged regions that attract 
each other even over the distance of a synaptic cleft. A transport 
protein is also the most frequently selected answer in the 
low-achieving group to the question of how proteins that should 
be imported to the nucleus find the nuclear pore complex.

Whereas low-achieving students consistently choose active 
processes instead of random events as explanations, this is not 
the case for average-achieving students. Comparing the 
response pattern of this class for questions R7 (arrival of tRNA 
molecules at the ribosome synthase), R8 (access of the RNA 
polymerase to promotor regions), or R9 (approaching of differ-
ent ions to transmembrane proteins), with those for questions 
R3 (arrival of ADP at the ATP synthase) or R6 (protein-nucle-
us-encounters), for instance, it appears that students are aware 
of stochastic processes on a molecular level only in distinct con-
texts (i.e., R3 or R6). However, they were unable to transfer this 
knowledge to other concepts. The high-achieving students 
seem to understand the concept of stochasticity in biological 
systems to a greater extent and were able to transfer the ran-
domness concept to many different contexts or biological pro-
cesses. Having solved most questions correctly, they only 
showed partial misconceptions about fundamental processes 
such as transcription or translation.

Subconcept C: Thermal Motion Causes Random Movement 
of Atoms and Molecules.  Question R4 indirectly compares dif-
fusion with the thermal motion of molecules. While all students 
from the high-achieving group understood that random move-
ments of molecules lead to their even distribution, only 34% in 
the average-achieving class and 46% in the low-achieving class 

selected this answer. Instead, many students in the latter two 
groups attributed the overall diffusion mechanism to the indi-
vidual molecules’ will to move away from those more crowded 
regions. The idea that the movement of molecules on a macro-
scopic level is directed away from more crowded areas is not 
wrong. Yet the reason is that the molecules encounter fewer 
other molecules with which they would collide and thus move 
over larger distances without changing their direction. It is not 
the molecules’ decision to move away but rather the decreased 
probability of colliding if fewer molecules are around. However, 
this explanation is only correct in an empty space. The cellular 
environment is crowded (Brownian diffusion is still applicable; 
Dix and Verkman, 2008), and the explanation that the chance 
of repulsion is higher in a region of higher concentration is not 
correct. Thus, the transfer of a chemical concept (diffusion) in 
biological systems appears to be difficult for many students. 
This conclusion was also reflected in the student interviews. For 
example, one student stated, “[This] answer … sounds too 
chemical. That is why I exclude it”, implying the challenge of 
transferring these concepts.

Finally, question R1 asks how it can be ensured that a mole-
cule binds the correct partner and how wrong interactions are 
avoided. Most students in all latent classes solved this question 
correctly. However, 22% of all students chose the explanation 
that correctly bound molecules bind to each other like puzzle 
pieces. This explanation constitutes a frequently used analogy 
in natural science education that was already shown to cause 
remaining misconceptions if not explained properly (Orgill and 
Bodner, 2007; Tobler et al., 2022a).

MRCI Limit Examination
For determination of the MRCI’s upper limits, the average per-
formance scores of biology doctoral students were examined 
and calculated as 6.73 (SD = 1.56; min = 3; max = 9), indicating 
that even some experts in biology do not fully understand the 
concept of stochasticity in molecular systems. Accordingly, the 
results indicate that the MRCI might apply at various higher 
education levels. However, more than 30% (n = 8) had zero or 
only one mistake, and nearly 60% had no more than two mis-
takes (n = 15). The summative scores are displayed in Supple-
mental Figure S2.

DISCUSSION
The growing acknowledgment of stochasticity in biological pro-
cesses and the lack of a sophisticated diagnostic tool to assess 
students’ understanding of randomness in molecular biology 
stimulated the development of a novel concept inventory to 
assess students’ understanding of this concept. Thus, we devel-
oped the MRCI to evaluate students’ understanding of the fun-
damental concept of stochasticity in molecular processes and 
examined the validity and reliability of the data gathered for 
students’ responses using various psychometric analyses. More-
over, implementing the MRCI allowed identification of miscon-
ceptions common to undergraduates and pointed to specific 
biological topics in which the role of randomness is not yet fully 
understood by students. The materials and findings from this 
study might help educators reliably assess students’ under-
standing of the concept of stochasticity, inform teachers and 
students about their knowledge, and support faculty in adjust-
ing their lectures and curricula.
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Validity and Reliability Estimation of the MRCI 
Administration Study
Our findings suggest that the estimates obtained by administer-
ing the MRCI yield reliable and valid estimates of students’ 
understanding of randomness, also in light of the response 
validity analysis based on the think-aloud interviews. Moreover, 
we could show that the MRCI measures one conceptual dimen-
sion, as intended, and is a good fit between the Rasch model 
and the individual items. Only item R1 showed a statistically 
significant deviation from the model. However, this is poten-
tially due to the relative easiness and, thus the lower discrimi-
nation index, of the question. Furthermore, the complementary 
approaches (i.e., item difficulty and discrimination) supported 
its retention in the MRCI.

Students’ Conceptions of Randomness and the Role of the 
MRCI
The results we obtained by administering the MRCI and con-
ducting the interviews aligned with the literature (Garvin-
Doxas and Klymkowsky, 2008; Champagne Queloz et al., 2016; 
Fiedler et al., 2017; Gauthier et al., 2019), in that undergradu-
ate university students do not seem to fully comprehend that 
stochastic processes underly molecular biological systems. The 
understanding that random events can be effective in reaching 
a beneficial outcome seems to be missing for many students. 
The interviews supported this conjecture. For instance, one par-
ticipant stated, “It just sounds too random and as if there 
wouldn’t be any logic behind it.” Similarly, another student 
independently said, “This [random motion] appears to be very 
inefficient, and I really hope that it is not inefficient.” In specific 
examples like diffusion, students know that random processes 
are involved. However, they did not seem to see the same 
underlying processes in other situations if trigger words such as 
“diffusion” are missing. Instead, students may not fully under-
stand the concept but have studied rote answers regarding 
molecular processes in specific situations. Garvin-Doxas and 
Klymkowsky (2008) drew a similar conclusion and found that 
students are aware of the random component in diffusion but 
cannot transfer this knowledge. However, the implementation 
of the MRCI allowed for a deeper analysis of students’ concep-
tions of molecular stochasticity, especially regarding student 
reasoning, thus yielding insights that earlier published concept 
inventories (Garvin-Doxas and Klymkowsky, 2008; Fiedler 
et al., 2017; Gauthier et al., 2019) could not reveal. The nine 
items, with 36 response options comprising 27 topically diverse 
distractors, allow a fine-grained analysis of students’ knowl-
edge and a clear elaboration of the related knowledge boundar-
ies. Being able to gather information not only from individual 
questions but from a multitude of items further allows detec-
tion of patterns of students’ conceptions in cases in which cer-
tain aspects of a concept are already covered, and thus, the stu-
dents know the answer to a particular question.

The latent class performance analysis further revealed dif-
ferent patterns of understanding of biological phenomena. 
Whereas the concept of randomness was clear to almost all 
students in the high-achieving class for many topics, more 
than one-third had difficulty applying the concept to the most 
fundamental processes, namely transcription and translation. 
Most students from the average achievement class also did 
not appreciate stochastic processes in these two concepts but 

additionally failed to understand the same concept in other 
contexts. The students apparently knew that random motion 
is essential for the molecules’ movement in specific situations. 
However, they were unable to transfer this knowledge to 
other situations. Finally, most students from the low-achiev-
ing class struggled with the concept of stochasticity in all con-
texts presented.

Considering the different incorrect answers given to explain 
random events through active processes, the response pattern 
varies drastically among the three groups. Whereas students in 
the low-achieving group agreed on various wrong explanations 
(from the active decision making of molecules to active forces 
acting on molecules), students in the high-achieving group 
agreed that molecules cannot make decisions or perform spe-
cific actions as needed. Instead, if they wrongly assumed an 
active process, they mainly explained this through mechanisms 
that work on the molecules as active pumping. In light of the 
conceptual change framework (Vosniadou et al., 2008), it could 
be argued that students start with a teleological understanding 
of the world, in which all processes need to have a causal expla-
nation (Coley and Tanner, 2015). Later in their education, they 
learn topics in biology such as transcription or translation and 
neural communication. The new information is thereby inte-
grated into the students’ framework of prior knowledge. 
So-called synthetic concepts (Vosniadou et al., 2008) emerge, 
which correspond to a middle way between the naïve under-
standing and the scientific theory.

A similar development of conceptual understanding could 
be plausible for the concept of random movement at the mole-
cular level (Figure 8). Students who explain random processes 
through active actions and decisions of molecules, like the 
direct grabbing of the ADP molecule by ATP synthase, might 
later develop an understanding that single molecules cannot 
perform such actions. However, they continue to assume that 
a nonrandom process must guide the molecules to the ATP 
synthase, implying that a stochastic behavior cannot effec-
tively drive this process. Eventually, the students reach a com-
plete, scientifically correct understanding, realizing that the 
ADP molecules arrive at the ATP synthase by random move-
ments and not through active mechanisms. Therefore, con-
cepts learned earlier might be more strongly anchored in the 
knowledge framework and are thus more challenging to 
refute, partly because the knowledge needed to refute these 
misconceptions is not taught simultaneously when the new 
concept is introduced. These early synthetic concepts might 
even be reinforced by attempts to explain these processes, for 
instance, frequently encountered textbook pictures that show 
enzymes and their substrates already in the correct position to 
interact.

In conclusion, the results of this study suggest that students 
might benefit from timely analysis of putative misconceptions 
and subsequent targeted support on their learning path toward 
obtaining a complete conceptual understanding of the role of 
randomness in biological systems. Instructors at all levels of 
education, from high school to university, should stress the 
issue of randomness in biology in much greater detail and point 
to its role in the various biological processes they present to the 
students. Potentially, novel teaching methods should be more 
frequently integrated into higher education settings. For 
instance, student-centered teaching strategies, including more 
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interactive learning opportunities and formative assessments, 
increased students’ conceptual understanding in university 
classrooms (Connell et al., 2016; Smith et al., 2019) and could 
support advances in tackling the concept of stochasticity in 
molecular biology.

Administration of the MRCI
As the use of the MRCI is not bound to a specific topic but rather 
infers conceptual knowledge, its administration is not tied to a 
specific time point in education or a particular curriculum. 
Results from the doctoral student examination additionally 
revealed that the MRCI’s upper limitations are not easily reach-
able, indicating its applicability on various higher educational 
levels. Also, the format of the MRCI suggests various economic 
and straightforward uses to assess students’ understanding. 
Ways to do so could include 1) using it as a (formative) assess-
ment tool of the current state of students’ knowledge, 2) admin-
istering the MRCI in a pre- and posttest design to investigate the 
impact of a new teaching methodology or curriculum, and 3) 
taking individual questions from the MRCI to test the under-
standing of randomness in a specific topic. Moreover, indepen-
dent of how and when the MRCI is used, educators might be 
able to specifically detect individual difficulties or ubiquitous 
incorrect conceptions, which might indicate where or when 
more detailed or specific instructions could be beneficial for 
learning. Using this test in classrooms could also help make stu-
dents aware of potential knowledge gaps and could help them 
identify critical aspects of randomness in other molecular pro-
cesses. However, the validity and reliability of the data gathered 
through the MRCI described here are only applicable if the test 
is used as a whole. Furthermore, the present results are based 

on the German version of the MRCI. Additional translation val-
idation might be valuable before conducting a study with the 
English version.

Based on the test–retest reliability results with delayed test-
ing after 3 months, we recommend using the MRCI as an assess-
ment tool for testing the understanding of random processes in 
biological systems in higher educational settings, for example, 
in pre- and posttest designs to assess the development of stu-
dents’ understanding as encouraged in earlier studies (Smith 
et al., 2008b; Shi et al., 2010; Fisher et al., 2011).

An important use of the MRCI results could be to raise 
awareness that explicitly teaching processes on a molecular 
level could support students in comprehending stochasticity in 
biological systems, such as the stochastic differences in gene 
expression levels displayed by cells of the same type as revealed 
by single-cell methods (Reinius and Sandberg, 2015). Students 
might benefit from considering why the distractors are wrong to 
understand why the correct answer is correct. Also, there should 
be no time restrictions to the MRCI to avoid time pressure as a 
confounding factor. Further, students should be instructed to 
work alone and without any aids. The individual questions are 
not building on top of each other and thus can be displayed 
randomly. All the MRCI questions can be found in Appendix A 
of the Supplemental Material.

Limitations and Future Work
A major limitation of the present study is the relatively small 
sample size, which decreases the findings’ statistical power, 
making them less robust against variation and more prone to 
errors. Despite the results of the LCA identifying three sub-
groups in the present population, it could be worthwhile to 

FIGURE 8.  Conceptual change model for the random movement of molecules in cellular environments. Synthetic models (Vosniadou 
et al., 2008) describe students’ conceptual explanations that do not entirely agree with the scientific understanding of the same concept. 
Students’ ideas of how the ADP molecule arrives at the ATP synthase thereby develop from the model in A, the active grabbing of the 
molecule by the ATP synthase, to the active pumping mechanism that brings the ADP molecule to the synthase without active actions of 
the molecules themselves (B). Finally, students arrive at acknowledging that molecules move by random motion, which drives ADP toward 
ATP synthase (C). The latter corresponds to the scientifically accepted model.
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administer the MRCI to a larger cohort and investigate whether 
the current findings could be replicated. Likewise, greater preci-
sion regarding the Rasch model’s infit and outfit estimation 
could be obtained to better judge the fit of individual items. 
Also, the sample sizes of the pilot study and of the administra-
tion study at the delayed time point were relatively small 
despite great efforts to recruit more students. Hence, these lim-
itations further call for a replication study with more students, 
potentially even from several different universities at various 
time points during their studies. Furthermore, the conclusions 
drawn from the pilot study must be interpreted cautiously 
regarding the revision of individual items, as they are based 
solely on a few participants. Thus, it cannot be excluded that 
conducting the study with more students might reveal the 
necessity of adjusting the wording of individual items.

Moreover, a general limitation of most concept inventories, 
including the MRCI, concerns the definition of the concepts in 
question. Even though an extensive map was established before 
test development, such frameworks often fail to encapsulate all 
aspects of a specific concept, and it cannot be excluded that 
certain wrong conceptions remained obscured. Also, even with 
an unlimited number of questions in such assessment tools, 
there still might be undetected differences in the level of under-
standing. Additionally, perfect test performance does not imply 
perfect understanding of the topic. However, the results of the 
implementation study demonstrate that the MRCI yields a reli-
able and valid estimation of students’ conceptual comprehen-
sion of randomness. Furthermore, the insights from think-aloud 
interviews suggest that the MRCI measures, in most cases, the 
understanding of the concept of stochasticity on a molecular 
level, thus supporting the developed concept map and the 
response validity of the MRCI. A further limitation is the nature 
of the self-reported self-efficacy values, which can comprise 
meta-cognitive biases that could lead to under- and overestima-
tions of an individual’s performance (e.g., Nadler et al., 2015).

In future studies, it would be advantageous to assess the 
psychometric properties of the English version of the MRCI. 
Even though several people independently validated the trans-
lation, having empirical classroom data could help identify 
items that require fine-tuning. A validation of the translation by 
a professional might provide further linguistic support for the 
English version of the assessment. Additionally, as the students 
in the MRCI implementation study all belonged to the same 
cohort, replicating the study would allow for assessment of the 
MRCI’s test reliability in greater detail. As the current study is 
limited to first-year students, it will be interesting to see how 
the MRCI can be applied to other student cohorts. Whereas con-
ducting the MRCI with biology doctoral students presents a first 
step in revealing insights regarding the upper limits of this con-
cept inventory, the investigation of students’ performance in 
subsequent years of their university studies might give valuable 
insights regarding students’ ongoing development of a com-
plete conceptual understanding. Eventually, the MRCI could be 
used to track students’ performance throughout their studies, 
including investigating the effects of individual courses or cur-
ricula on their understanding.

CONCLUSION
The MRCI constitutes the first diagnostic tool that enables a 
fine-grained analysis of students’ understanding of stochastic 

processes on a molecular level. It helps to tackle different mis-
conceptions and unveil subconcepts of particular difficulty by 
covering a broad range of ideas. Furthermore, this tool might 
help students assess their learning progress, and lecturers or 
curriculum developers evaluate, plan, and design new courses 
or learning materials. Eventually, the application of the MRCI in 
a university classroom could reveal valuable insights into stu-
dents’ conceptual understanding of the concept of stochasticity 
on a molecular level.

Accessing Materials
The data supporting this study’s findings, along with all 
materials and analysis scripts, are openly available (https://osf 
.io/yztj6/). The German and English versions of the MRCI are 
also available in the Supplemental Material.
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