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ABSTRACT
Active learning approaches to biology teaching, including simulation-based activities, are 
known to enhance student learning, especially of higher-order skills; nonetheless, there 
are still many open questions about what features of an activity promote optimal learn-
ing. Here we designed three versions of a simulation-based tutorial called Understand-
ing Experimental Design that asks students to design experiments and collect data to test 
their hypotheses. The three versions vary the experimental design task along the axes of 
feedback and constraint, where constraint measures how much choice students have in 
performing a task. Using a variety of assessments, we ask whether each of those features 
affects student learning of experimental design. We find that feedback has a direct positive 
effect on learning. We further find that small changes in constraint have only subtle and 
mostly indirect effects on learning. This work suggests that designers of tools for teaching 
higher-order skills should strive to include feedback to increase impact and may feel freer 
to vary the degree of constraint within a range to optimize for other features such as the 
ability to provide immediate feedback and time-on-task.

INTRODUCTION
With the current emphasis on teaching complex, higher-order skills (American Associ-
ation for the Advancement of Science, 2011; NGSS Lead States, 2013), and a large 
body of research that students learn such skills better through active-learning 
approaches (Freeman et al., 2014), it is still an open question what types of active 
learning are best suited to maximize learning (Behar-Horenstein and Niu, 2011; 
Freeman et al., 2014). A wide range of classroom activities classified as active learning 
have been shown effective, but they have many different features (Table 1). The liter-
ature contains categorizations of active learning approaches, such as by the degree of 
scaffolding (e.g., Buck et al., 2008), or along a scale of constructivism (e.g., Arthurs 
and Kreager, 2017). As designers of educational tools, we consider characteristics that 
might make an activity effective in classrooms (e.g., McConnell et al., 2017), while not 
requiring too much instructor effort to be practical for larger classes (Momsen et al., 
2010). For instance, computer simulations are known to be effective (Rutten et al., 
2012), but it is often unclear exactly which aspect(s) of a simulation-based learning 
environment makes it effective and studies often lack data on how specific features 
such as feedback impact effectiveness (Chernikova et al., 2020). For this study, we 
abstracted three features that have been hypothesized as important.

Some inquiry activities afford students little freedom of choice, which we term here 
a “constraint” on the students' own exploration (after Scalise and Gifford, 2006). As 
an example, computer-based questioning systems designed to help students solidify 
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knowledge on a topic (e.g., Urry et al., 2017) are often highly 
constrained, consisting of multiple-choice or similar format 
questions, with limited answer options. By contrast, examples of 
low-constraint activities include building models in a simulation 
environment (e.g., Klopfer et al., 2009; Bodine et al., 2020), 
researching and making written or oral presentations, or other 
activities where there are many paths available for students to 
take (even if they have highly scaffolded instructions guiding 
them). The degree and type of constraint, on their own, can 
affect learning (Meir et al., 2019; Puntambekar et al., 2020).

Another characteristic that differs among active-learning 
activities is the availability of feedback. Feedback can have a 
major influence on student learning (Hattie and Timperley, 
2007; Shute, 2008), but there are mixed results on when and 
where feedback is most effective (Kingston and Nash, 2011; 
McMillan et al., 2013; Van der Kleij et al., 2015; Wisniewski 
et al., 2020). To help tease apart how feedback influences 
learning, different authors have proposed categorizing feed-
back along multiple axes. Proposed categories include immedi-
ate versus delayed feedback, the level at which the feedback is 
aimed (e.g., task vs. process vs. self-regulation), whether the 
feedback simply provides the correct answer, explains the ratio-
nale for that answer, or provides guidance for what the student 
should try next (Hattie and Timperley, 2007; Shute, 2008; 
Brooks et al., 2019). Germane to this study, there are indica-
tions that the type and timing of feedback can interact with the 
type of task the student is completing. The optimal timing of 
feedback (immediate vs. delayed) is still under debate and may 
be related to whether tasks are aimed at lower- or higher-order 
thinking (Van der Kleij et al., 2015). Elaborated feedback, 
where an explanation is provided, has sometimes but not 
always been shown to be more effective than simply providing 
the correct answer (Van der Kleij et al., 2015) and its effect may 
depend on whether task items are highly constrained like mul-
tiple choice or lower constraint (LC) constructed response items 
(Wang et al., 2019). Much of this prior work postulates that 
features of feedback that make it effective, especially for high-
er-order tasks, are those that help students reflect on their 
understanding in ways that help them improve their future per-
formance (e.g., Maier et al., 2016; Brooks et al., 2019). Most 
importantly to this work, the bulk of previous research has 
looked at feedback in contexts of either very constrained tasks 
such as multiple choice questions (Van der Kleij et al., 2015; 
Zhu et al., 2020), or less commonly lightly-constrained tasks 
such as constructed responses (e.g., Wang et al., 2019; 

Zhu et al., 2020), but rarely in the context of tasks with con-
straint that is intermediate between those such as the type of 
simulation-based teaching tool we explore here.

Finally, while it does not directly impact student learning, 
the effort involved in preparing and providing feedback or scor-
ing for each student has a large influence on whether instruc-
tors adopt a particular type of activity, particularly for large-en-
rollment classes, which are typical of many introductory-level 
science courses (Momsen et al., 2010; McConnell et al., 2017). 
In Table 1, we summarize these three features for a range of 
activities that are commonly used in science classes.

In considering how these three characteristics might theo-
retically influence the effectiveness of activities (Nehm, 2019), 
we note that the presence, type, and timing of feedback are 
often dependent on the amount of constraint, as is the per-stu-
dent instructor effort. That is, providing timely feedback is 
often only possible when an activity is highly constrained, or at 
least thoughtfully constrained at some intermediate level (Meir, 
2022). Activities where the interaction is highly constrained, 
such as through multiple choice questions, can easily provide 
immediate feedback to the learner, with a low level of per-stu-
dent instructor effort. Low-constraint activities, such as open-
ended simulation environments or written or oral presentations 
typically do not have immediate explicit feedback because there 
is often no feasible way to provide such feedback, other than in 
classroom settings where the feedback comes from the teacher 
responding to student discussion (e.g., Brooks et al., 2019). 
Instead, they may have implicit feedback (e.g., the student-built 
model does or doesn’t run or behave as expected), or limited 
explicit feedback (e.g., the audience asks good questions and/
or provides a few thoughts on the presentation), but the bulk of 
the specific feedback comes to the student with a delay of days 
or weeks, if ever, once the instructor has a chance to review and 
assess the work of all of the students (thus, much higher per-stu-
dent instructor effort).

Many activities fall between these extremes of high con-
straint with immediate feedback or low constraint with delayed/
no feedback. Case studies, for instance, are often guided more 
lightly than worksheets of practice problems but are more 
structured than an open-ended research project. Feedback for a 
case study might be given immediately if on a computer, for 
instance, if some or all of the questions are in formats that can 
be algorithmically scored (Clarke-Midura et al., 2018; 
Magalhaes et al., 2020). Or, feedback might be given with a 
short delay on a worksheet-based case study when groups of 

TABLE 1. A selection of activities used in large-enrollment biology classes to introduce more active learning, and some broad characteristics 
typical of each. See definitions in the text for Constraint and Feedback as used here.

Activity Constraint Feedback
Instructor effort 

(per student)

Polling questions High Immediate Low
Think-pair-share High Immediate Low
Case studies Intermediate Immediate to None High
Written or oral presentations Low Delayed High
Concept-mapping Intermediate to Low Delayed to None High
Intelligent tutoring systems High Immediate Low
Computer-based model construction/simulation exploration Low Delayed to None Low to High
Highly structured simulations High to Intermediate Immediate to None Low
Traditional “hands-on” labs High to Intermediate Delayed to None Low to High
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students working in a discussion section might periodically 
have a conversation with the teaching assistant, with a longer 
delay if the worksheet is turned in for grading, or even never, if 
the students complete the worksheet and receive points for it 
without specific detailed feedback.

There is evidence of both learning enhancement and barri-
ers to learning at different positions on the feedback and con-
straint axes. Timely feedback often leads to more effective and 
efficient learning but can also be used by students as a crutch or 
to game the system by relying too much on feedback rather 
than thinking through the question themselves (reviewed in: 
Hattie and Timperley, 2007; Baker, 2011). Different degrees of 
constraint can similarly be beneficial or detrimental to learning 
by, for instance, challenging students too little, too much, or 
just enough given their current skill level (Colburn, 2000; 
Sweller et al., 2007; Meir et al., 2019; Meir, 2022). Here we ask 
how these two axes of active learning, feedback, and degree of 
constraint, may affect learning experimental design, a skill that 
is complex, difficult, and core to biology (and all sciences).

Experimental design is a difficult higher-order skill
One of the most fundamental skills for students in biology–and 
indeed all science classes–is designing a good experiment 
(American Association for the Advancement of Science, 2011; 
NGSS Lead States, 2013). Experimental process is at the heart 
of science, yet students often miss important aspects of both the 
design and implementation of experiments (Dasgupta et al., 
2017; Woolley et al., 2018; Pelaez et al., 2022). Because of this, 
we chose experimental design as our focal skill for this study. 
Many aspects of experimental design are challenging to stu-
dents across all levels of study (e.g., Kuhn et al., 2009; Brownell 
et al., 2014; summarized in: Schwichow et al., 2016; Dasgupta 
et al., 2017; Pelaez et al., 2017). From this broad literature, we 
extracted a set of 17 learning outcomes, listed in the Supple-
mental Materials (Supplemental Table S1), that we used in a 
backward design process when writing both the learning tutori-
als and the assessment items in this study. We do not focus 
further on these learning outcomes here because, while our 
specific research questions are about experimental design, the 
purpose of this study is to illuminate how feedback and con-
straint may affect the learning of higher-order skills more 
generally.

This study centers on a simulation-based learning tutorial 
called Understanding Experimental Design (UED) written for 
students in undergraduate biology classes (Pope et al., 2016). 
In addition to targeting experimental design learning out-
comes (Supplemental Materials), we also designed UED to 
explicitly test ideas about the role of feedback and constraint 
in enabling student learning. As authors of open-ended simu-
lation-based learning tutorials that often target higher-order 
skills, we were frustrated that we were not able to provide 
immediate, specific feedback to students based on their open-
ended explorations using our simulations. This is a common 
problem as it is hard to provide immediate feedback on LC, 
open-ended activities, particularly in larger classes. Because of 
this, much of the research on the effects of feedback is done 
with more constrained tasks such as multiple-choice questions 
or memorization of lists (Van der Kleij et al., 2015). We won-
dered whether a lack of direct feedback reduced student learn-
ing efficiency in complex, open-ended tasks. Our premise was 

that adding some constraints to an open-ended simulation 
might allow us to provide specific, immediate feedback to stu-
dents, while still preserving the exploratory aspect of a simula-
tion environment.

Research Questions
This project set out to answer two related questions about how 
to design effective learning activities for higher-order skills, 
with our focal skill being experimental design.

1. Does immediate feedback (enabled by constraint) improve 
student learning of experimental design?

2. Does the degree of constraint (higher or lower) impact stu-
dent learning of experimental design?

METHODS
Description of the UED tutorial
The version of UED used in this study was the third major revi-
sion of an experimental design tutorial on this study, based on 
extensive student testing and prior research studies with earlier 
versions (Abraham et al., 2009). The evolution and justification 
of choices made in the tutorial and its predecessors are elabo-
rated on elsewhere (Clarke-Midura et al., 2018; Meir, 2022). 
Here we provide a brief description of UED as it was presented 
to participants in this study.

Students are given the following scenario. The town of Idyl-
lic has an endemic species called “Simploids” that are beloved 
by town residents but have recently been getting sick and dying. 
Students are tasked by the town with doing experiments to dis-
cover the cause of the sickness, with two potential causes sus-
pected (parasites and herbicide). The tutorial is split into two 
sections, which differ in their objectives and level of constraint. 
This split was based on earlier work on this project (unpub-
lished data) which showed that students’ experimental designs, 
and their ability to discuss and rationalize those designs with 
the language of science, were often poorly correlated. We thus 
aimed one section at teaching the terminology and concepts of 
good experimental design, and the other on designing, imple-
menting, and interpreting simulated experiments – in other 
words, the first focused on developing students’ declarative and 
conceptual knowledge and the second on developing their pro-
cedural knowledge (Ambrose et al., 2010, pp. 18–19).

Section 1 is a scaffolded lesson on experimental design that 
provides students with the building blocks for good experi-
ments and the language used to describe them. Among the con-
cepts covered are systematic variation, scope of inference, inde-
pendent and dependent (or outcome) variables, treatment and 
control groups, potentially confounding variables, and replica-
tion. Students are assessed on their understanding as they prog-
ress through the section with 19 formative assessment items. 
Most questions in this section use the high-constraint multiple 
choice format, with five multiple-select, numerical, and other 
formats that are less constrained than multiple choice but more 
than open response termed “intermediate constraint” or “IC” 
(Scalise and Gifford, 2006; Meir et al., 2019).

In Section 2 students design and conduct their own experi-
ments using a simulation of the Simploids. After being guided 
to choose a hypothesis and plan their experimental design, the 
heart of the section is an interactive control panel where stu-
dents design and run their experiment (Figure 1A). They can 
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choose to use up to eight study plots through an “Add Study 
Plot” button. They must decide how many Simploids and plants 
(the food of the Simploids) to place in each plot, and whether 
to include herbicide and/or parasites in each. Once they start 
running the simulation, they must decide how long to run their 
experiment (Figure 1B). Students can see the health status of 
the Simploids throughout the simulation (there are three states 
– healthy, sick, and dead), and after its completion, an interac-
tive data table lets them view their results. They can adjust the 
design of their experiment, and complete as many runs as they 
choose. Each run can last up to 28 d, in 7-d increments. This 
section also has students answer questions in formats with 
intermediate degrees of constraint (for instance, constructing 
sentences from fill-in-the-blank choices [LabLibs: Meir, 2019]) 
and several short-answer questions on their experimental 
design plans and conclusions. All questions, except the short-an-
swer format and the interactive data table, provide immediate 
feedback to students.

Section 2 includes two different experiments, modeling for 
students that the experimental process is often iterative. After 
carrying out one or more experimental runs to test one hypoth-
esis for the cause of the disease and drawing a conclusion 
(“Initial Experiment”), students are asked to consider what 
they still don’t know and design and carry out a second exper-
iment to expand on their knowledge (“Follow-Up Experi-
ment”). For example, they may choose in the Follow-Up Exper-
iment to test the other putative cause of the disease, or test 
both potential causes simultaneously (they are strongly 
encouraged in the Initial Experiment to test only one variable). 
The underlying simulation is complex enough that almost all 
students have room to learn more about the system after the 
Initial Experiment.

In the Initial Experiment, students can choose to receive 
immediate, specific feedback on their experimental design 
before running their experiment, through a “Check My Setup” 
button (which they can use as often as they wish). In terms of 

the major feedback classification systems mentioned in the 
introduction, this feedback is mostly at the task and process 
level (how and why to use certain experimental design con-
cepts), elaborated (with explanations), and a mix of what 
should be done, how to do it, and where to go next. For instance, 
if a student has no variation between their plots, they receive 
feedback that reads “To draw conclusions from an experiment 
you need to create systematic variation so that you can make 
comparisons between plots. It doesn’t look like there is any vari-
ation between your plots. In particular, you should vary the 
independent variable that you specified in your hypothesis.” 
The focus of the feedback is on process rather than on whether 
the student got the task right or wrong. The words “systematic 
variation” and “independent variable” link to definitions of 
those terms (setting expectations), there is an indication of 
whether the student performed as expected (“it doesn’t look 
like …”) and the student is given suggestions for where to go 
next (“you should vary …”). This feedback has the hallmarks of 
types of feedback that have been successful in other studies 
(Brooks et al., 2019).

Our algorithms provide feedback on four aspects of students’ 
experimental design: whether their design systematically var-
ied variables across plots; whether they had appropriate con-
trols for each variable; whether their experiment matched their 
hypothesis; and whether they had appropriate replication. We 
did not provide feedback within the experimental design area 
about two “natural history” related aspects of the experiment: 
whether they ran the experiment long enough to see the disease 
progression; and whether they included enough plants to feed 
all the Simploids in a plot. They should have been able to deter-
mine good values for those two parameters from natural history 
information about the Simploids and the disease progression 
provided earlier in the section, and from observing the progress 
of their experiments and examining their experimental results 
(a form of indirect feedback). The Follow-Up Experiment does 
not include the “Check My Setup” button, because it is intended 

FIGURE 1. Experimental design activity in UED. (A) The panel students use to design their experiment. Students can use up to eight study 
plots. Each has sliders for selecting number of Simploids and plants, and checkboxes for whether to include herbicide or parasite. A “Check 
My Setup” button near the bottom provides feedback on the current design. (B) Once ready, clicking “Conduct Test” at the top of the 
design interface switches to an interface allowing student to run the simulation and collect data. The simulation uses individual-based 
models. Buttons at the bottom let student choose how long to run and when to collect data.
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as a near-transfer assessment where students can apply what 
they learn from the feedback (both direct and indirect) that 
they received on the Initial Experiment.

See https://simbio.com/content/understanding-experimen-
tal-design for a video introduction to UED. The released version 
of the UED tutorial (with small modifications from the versions 
used in this study) is available for evaluation purposes from 
SimBiotic Software by writing to info@simbio.com and refer-
encing this paper.

Three experimental versions of UED
To separately measure the effects of feedback and of constraint 
on student learning, our study compared three versions of UED. 
All versions included the same Section 1 of the tutorial, with 
different versions of Section 2. One version, which we call IC, 
With Feedback (ICWF), constrained students in the design 
activity by only allowing them to select presence or absence of 
parasites and herbicide in each study plot (using radio buttons), 
and only allowing addition of Simploids and plants by incre-
ments of 10 (using sliders; Figure 2A). This ICWF version 
includes the “Check My Setup” button which students are free 
to click at any time while doing the Initial Experiment to receive 
feedback about their current design. This ICWF version is equiv-
alent to the full version of the tutorial as described in the previ-
ous section.

A second version, which we called IC, No Feedback (ICNF), 
was identical to the ICWF version, except the “Check My Setup” 
button was hidden, so no feedback was available in the Initial 
Experiment (Figure 2B). We thus could compare students who 
completed the ICWF version of the tutorial with students who 
completed the ICNF version to test for the effect of feedback, 
without a change in constraint.

A third version which we called LC, No Feedback (LCNF) 
also was missing the “Check My Setup” button. In addition, 
rather than radio buttons and sliders, students controlled all 
four parameters (Simploid population, plant population, para-
site, and herbicide) by placing those items in the study plots 
with the computer’s mouse (Figure 2C). They could place mul-
tiples of an item with a click and drag (like drawing a rectangle 
in a drawing program). Students thus had finer control over the 
number of each item – rather than presence or absence, or mul-
tiples of 10, they could place, say, five units of herbicide, three 
units of parasite, 24 Simploids, and 32 plants, opening up other 
possible experiments such as testing for dose effects. Students 
using the LCNF version could create plots with the same para-
meter settings as were available in the IC versions, as well as 
many other combinations. Another difference is that the simu-
lation ran in 1-d, rather than 7-d, increments (the maximum 
duration was still 28 d). Thus, the students in this treatment 
had more choices for their experimental design, but required a 
bit more effort per experiment. We note that this is a relatively 
small reduction in constraint, and many constraints remain 
(there are still only four variables available, only eight study 
plots, etc.). By comparing students who complete the ICNF ver-
sion to those who complete the LCNF version, we are able to 
isolate the effect of a small change in constraint, without a 
change in feedback.

An ideal experimental design would also include a LC With 
Feedback condition. However, we were not able to create that 
version because our feedback algorithms require a more con-
strained number of combinations to provide accurate feedback.

The Follow-Up Experiment in each version – the second 
round of experiments where students are encouraged to test a 

FIGURE 2. Three versions of UED. (A) ICWF has sliders and 
checkboxes for determining contents of each study plot and 
includes a “Check My Setup” button. (B) ICNF is identical to ICWF 
but has no “Check My Setup” button. (C) LCNF has students add 
contents to each study plot with drag and drop for more flexibility 
and has no “Check My Setup” button.



23:ar1, 6  CBE—Life Sciences Education • 23:ar1, Spring 2024

E. Meir et al.

second hypothesis – was similar to the Initial Experiment in 
most ways, including the level of constraint. However, the 
“Check My Setup” button was not present in the Follow-Up 
Experiment in any of the versions. We intended to use students’ 
designs in the Follow-Up Experiments as a performance-based 
comparison of experimental design ability by treatment.

Student testing of UED and prior versions. We used extensive 
think-aloud interviews to check the clarity and fidelity to our 
intent of all UED activities and questions. These were con-
ducted as part of an iterative design-research process, starting 
with another SimBio module called “Darwinian Snails”. That 
module was first extended with a section on experimental 
design. Through several more iterations that section was split 
into its own module, a tutorial on principles of good design was 
added, and the storyline was changed to discuss the fictional 
Simploids. We conducted over 80 student interviews through-
out this process to gather the data which drove the iterations, 
and conducted another three specifically with the LCNF version 
of the tutorial. All interviews were with undergraduate students 
recruited from introductory biology classes from colleges and 
universities around Boston, MA, ranging from research univer-
sities to undergraduate-focused colleges to community colleges, 
both public and private.

Measures of experimental design
For the study presented here, we used four assessments of stu-
dents learning, and three sets of students, to address our 
research questions (Tables 2 and 3). This section provides a 

brief overview of the assessments and the next provides an 
overview of experimental samples.

Screening survey. To stratify students in one of the study sets 
(see below) by prior understanding of experimental design con-
cepts, we asked each interested participant to fill out an online 
prescreening survey. In addition to asking several demographic 
and logistical questions about their availability, the survey con-
tained a nine-question conceptual assessment (see Supplemen-
tal Material B) which was used to split students into high, 
medium, and low performing sets. As this screening survey was 
used only for this purpose, and for only one set of study sub-
jects, we spent minimal effort on validation and do not discuss 
those survey results further in this paper.

Experimental Design Concepts Test (EDCT). To assess student 
understanding of the experimental design concepts and vocabu-
lary that the first section of UED was designed to convey (i.e., 
declarative and conceptual knowledge), we wrote an assessment 
we call the Experimental Design Concepts Test (EDCT). While 
several other assessments on competence in experimental design 
exist (e.g., Sirum and Humburg 2011; Gobert et al., 2013; 
Dasgupta et al., 2017; Deane et al., 2017), none published at the 
time had sufficient coverage of the learning outcomes addressed 
in UED while also being amenable to autoscoring. The EDCT 
consisted of 14 multiple choice questions, 11 of which had four 
answer choices and the last three with two answer choices. All 
questions were written to address one of the learning outcomes 
we were targeting (Supplemental Material Section A). The 

TABLE 2. Assessments and populations used to address research questions. See text for descriptions of each assessment and population. 
Supplemental Tables S1 and S2 are sections 1 and 2 of UED

Comparison Inference

Assessment: Experimental Design Ability Test (EDCT)
Samples: Split-Class & Individual
 Pre to Post
 Paired comparisons, within each population

Effect of UED S1 on declarative & conceptual knowledge of experimental design

Samples: Split-Class & Large-Scale
 Post
 Mean scores between populations

Generalizability of results

Assessment: In-tutorial experimental designs
Samples: Split-Class & Individual
 ICWF to ICNF Experimental Design scores Effect of feedback on experimental design skills in UED S2
 ICNF to LCNF Experimental Design scores Effect of constraint on experimental design skills in UED S2
 ICWF to ICNF to LCNF Biology scores Indirect effects of feedback and constraint on experimental design skills in UED S2
Samples: Split-Class & Large-Scale
 ICWF Experimental Design scores
 Between populations

Generalizability of results

Assessment: Multiple-Variable Experimental Design Ability Test (MV-EDAT)
Samples: Individual
 Pre to Post
 Paired comparisons, all treatments combined

Effect of completing UED on experimental design skills in transfer task

 ICWF to ICNF to LCNF Pre to Post change Effect of feedback and constraint on experimental design skills in UED S2

Assessment: Interview probing questions following MV-EDAT
Samples: Individual
 Pre to Post
 Paired comparisons, all treatments combined

Effect of completing UED on declarative & conceptual knowledge of experimental design
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Supplemental Materials (Supplemental Material Section C2) 
present several lines of validity evidence that the EDCT was mea-
suring student performance on the focal outcomes.

For the three experimental versions of UED, we placed the 
EDCT before and after Section 1 to measure learning gains 
from that highly constrained portion of the tutorial. As Section 
1 of UED was identical for all treatments, we also used EDCT 
results to check for any preexisting differences in performance 
between treatment groups.

Multiple Variable Experimental Design Ability Test 
(MV-EDAT). Distinguishing between true learning of experi-
mental design versus learning design within the specific context 
of the UED tutorial required a performance-based assessment 
independent of the tutorial. For this purpose, we looked for a 
pre/post assessment of experimental design procedural knowl-
edge that was open-ended and could capture many of the skills 
that UED was designed to teach. We started with the EDAT 
(Sirum and Humburg, 2011) and the Expanded EDAT (Brownell 
et al., 2014), which prompt students with a real-world scenario 
and ask them to design an experiment to address the challenge 
posed in the prompt (e.g., testing the validity of claims that a 
supplement has a specific impact on human performance). The 
prompts in those assessments were not well suited to this study, 
so we built our own derived prompts that we call the MV-EDAT 
because they include more variables than the original EDAT. 
There are two versions of the MV-EDAT, one called “Lizard” 
and the other “Fish”, after the species used in each prompt (see 
Supplemental Material Section D for more on the prompts and 
the logic for creating them). Students answered the prompts by 
drawing and/or writing on the paper that included the prompt.

The MV-EDAT prompts were followed by semistructured 
interviews to more completely document student declarative 
and conceptual knowledge. The interview started by asking 
them to describe the experiment they had designed on paper, 
and then followed up with questions designed to probe their 
understanding of experimental design concepts (interview 
script available on request). To assess their declarative knowl-
edge, some questions asked them to identify elements of their 
experiment (e.g., “Which is your control group?”); to probe 
their conceptual knowledge, other questions asked them to 
explain a concept (e.g., “How do you define control group?”). 
The interviews allowed us to disentangle procedural knowledge 

that students draw on when designing an experiment (i.e., the 
Apply, Analyze, and Create levels of Blooms taxonomy) from 
declarative and conceptual knowledge that students can cite 
when prompted (i.e., the Remember and Understand levels of 
Blooms).

Administration and scoring of the MV-EDAT. Two of the 
authors [D.P. and J.P.] conducted all the student interviews 
involving the MV-EDAT. To the extent possible we blinded 
interviewers and those scoring the interviews to the treatment 
for each student interviewed. We scored the students’ MV-EDAT 
experimental designs using both the descriptions they wrote on 
the paper with the MV-EDAT prompt, and also their verbal 
descriptions at the start of each interview. For each element of 
their experimental design where their written and verbal 
responses differed, they received the higher of the two scores. 
The experiments described on paper and/or verbally were 
scored on the presence of six different elements: 1) Uses sys-
tematic variation, 2) Addresses hypothesis, 3) Includes replica-
tion, 4) Includes variables held constant, 5) Includes dependent 
variable, and 6) Includes experiment duration. Each of these 
elements was scored on a scale from 0–2, with 0 being absence 
(i.e., no systematic variation, no replication, no mention of 
duration, etc.), 1 being incomplete or partially correct expres-
sion of the element and 2 being full and correct expression of 
the element. We also calculated a total experimental design 
score by summing all six elements (for a total possible score of 
12). Using a randomization test (see below), we found no sig-
nificant difference between MV-EDAT prompts so we consider 
the two prompts to be equivalent.

We separately scored eight of the probing interview ques-
tions intended to further explore student declarative (four 
questions) and conceptual (four questions) knowledge of 
experimental design (we did not analyze all probing questions 
because the semistructured nature of the interview meant that 
not all questions were asked consistently of all students). We 
used a rubric to score responses to the probing questions on the 
degree of expert-like response, from 0 (no evidence of under-
standing), 1 (partial evidence of understanding), and 2 (more 
complete evidence of understanding).

Two team members independently scored every student’s 
experimental design and response to probing questions using 
the rubrics described above, and then we discussed and came to 

TABLE 3. Data sources by sample studieda

Sample Individual Split-Class Larger-Scale
Versions of UED tested ICWF

ICNF
LCNF

ICWF
ICNF
LCNF

ICWF

MV-EDAT and interview
(Total ED score; ED elements)

ICWF (N = 11);
ICNF (N = 14);
LCNF (N = 14)

EDCT Pre-Section 1 X (N = 41) X (N = 165)
EDCT Post-Section 1 X (N = 41) X (N = 165) X (N = 1292)
UED Section 2 Experimental Designs
(Experimental Score; Biology Score)

ICWF (N = 11);
ICNF (N = 14);
LCNF (N = 14)

ICWF (N = 52);
ICNF (N= 64);
LCNF (N = 44)

ICWF (N = 648)

aUED is the UED tutorial, with versions ICWF, ICNF, and LCNF. MV-EDAT is the MV-EDAT and EDCT is the EDCT (see text for details of these tests). Sample sizes in 
parentheses – sizes listed for each treatment were those used for treatment comparisons.
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consensus on each score. See Supplemental Materials (Supple-
mental Material D2) for more detail on administering and 
scoring the MV-EDAT, including measures taken to blind inter-
viewers and scorers to treatments.

Analysis of experimental designs within UED. The final 
assessment this study relied on was an analysis of the experi-
ments students designed within the UED tutorial. As described 
in Section 2.1 above, the central activity in Section 2 of UED 
asks students to design, run, and analyze two experiments, 
which we designate the Initial Experiment and the Follow-Up 
Experiment. For both experiments, we logged the design a stu-
dent made each time they clicked either the “Check Setup” but-
ton (to get feedback, available in the ICWF treatment only) or 
the “Run button” (to run their experiment). We analyzed this 
data to determine four measures:

1. An “Experimental Score,” which combines three factors that 
is important to a well-designed experiment. Students 
received one point if their design had systematic variation 
between experimental plots; one point if they had appropri-
ate control plot(s); and one point if they had full replication 
of all plots or ½ point for replication of some but not all 
treatments (e.g., replicating the experimental but not con-
trol treatment). The Experimental Score for a student could 
thus run between 0–3. Crucially, in the ICWF treatment 
these were all items where the “Check My Setup” button pro-
vided specific feedback when their design scored less than 
one on any of these.

2. A “Biology Score,” which combines two factors that are spe-
cific to the biological example presented. Students received 
one point for having sufficient plants in each plot so the Sim-
ploids did not starve, and one point for running the simula-
tion long enough that the disease could take its course. The 
Biology Score for a student could thus run between 0–2. 
Crucially, the “Check My Setup” button did not offer direct 
feedback on either of these items, but students had the infor-
mation about the number of plants necessary, and by observ-
ing the course of their simulations, they had information 
available to infer when they had made these errors (i.e., 
without sufficient plants, all Simploids in the plot died 
immediately, and if they had the disease, Simploids first 
appeared sick before they died).

3. A “Match Hypothesis Score” which tallies whether the exper-
iment the student designed tests the hypothesis they had 
previously chosen earlier in Section 2. In the Initial experi-
ment, students had a choice of two hypotheses (Herbicide or 
Parasites as the disease causal factor). In the Follow-Up 
experiment, they could also choose “a combination of herbi-
cide and parasites.” The Match Hypothesis Score was 1 if 
they varied the variable(s) in their hypothesis and no others, 
0.5 if they varied the variable(s) in their hypothesis and oth-
ers, and 0 if they did not vary the variable(s) in their hypoth-
esis. For the Follow-Up Experiment, we only scored the 
Match Hypothesis for the Split-Class students, because the 
hypothesis for the Follow-Up Experiment was an open-re-
sponse item in the Individual- and Larger-Scale studies.

4. An “Experimental Complexity Score” which measures 
whether the student attempted to manipulate zero, one, or 
two independent variables.

See the Supplemental Materials (Supplemental Material E) 
for more details on scoring of those items.

We looked at the Experimental Score for the first design stu-
dents ran in the Initial and in the Follow-Up Experiments, the 
last design they ran in each, and the best design (i.e., high-
est-scoring) they ran in each. The differences between first, last, 
and best were small and the patterns were the same regardless 
of which we chose, so here we report all results using the first 
design students ran in the Follow-Up Experiment, and in the 
few cases where results differed between experiments, the best 
design students ran in the Initial Experiment. We chose the best 
design in the Initial Experiment as we thought students might 
learn from earlier runs of the experiment (or the feedback they 
received, in the case of the ICWF treatment) before running a 
good design, while we chose the first design in the Follow-Up 
Experiment as we thought by that point in the tutorial, students 
were less likely to be engaging in exploratory learning and 
more likely to attempt to directly design the experiment they 
wanted to run.

Faculty produced good experimental designs. To validate 
our interpretation of scoring the UED experimental designs, we 
asked five biology faculty, who we assume have relatively 
expert knowledge of the experimental design process (espe-
cially relative to students) to go through UED, including the 
experimental design tasks. Four of the faculty-produced exper-
imental designs we would have scored as perfect. One had a 
design we would have scored as perfect on “Experimental 
Score” and would have deducted a point on “Biology Score” as 
they included more Simploids than plants, causing the Sim-
ploids to die from starvation.

Given that faculty (our “experts”) generally produced 
designs that our algorithms scored as perfect, we performed 
statistics on the Experimental Score and the Biology Score by 
comparing students who received a perfect score versus stu-
dents who didn’t, lumping together all nonperfect scores. This 
way we were judging the proportion of “expert-like” experi-
mental designs in each sample.

Study samples
This study includes three distinct samples of students. Each 
sample facilitated the collection of some types of data but not 
others. To draw robust conclusions required combining the 
insights gained from each of the three samples. This section 
describes each sample and the purpose of including them in the 
study. 

Individual comparison of UED versions. To explore the 
research questions of how immediate feedback and degree of 
constraint impact student learning, we recruited students from 
six Boston-area colleges and universities to participate in indi-
vidual completion of UED along with the MV-EDAT transfer 
task and one-on-one interviews. We term this the Individual 
sample. Uniquely among our study samples, this sample pro-
vided an opportunity to assess student learning on an experi-
mental design task unrelated to the UED tutorial as we were 
able to use the time-consuming MV-EDAT and associated 
interviews. The testing of the Individual sample was structured 
as follows (also see Table 2, and see above for assessment 
descriptions).
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1. Researchers visited introductory biology courses at Bos-
ton-area colleges to announce the study and recruit 
participants.

a. Interested students took the Screening Survey online and 
were invited for in-person interviews. These students 
were randomized between UED treatments within the 
low, medium and high strata determined by the Screen-
ing Survey.

2. Students came to the study location for an approximately 
2-h session, with two parts:

a. Students completed the MV-EDAT, including the fol-
low-on interview

b. Students completed Section 1 of UED (the lesson on 
experimental design vocabulary and concepts), including 
the EDCT as a pre- and posttest around this first section. 
Their actions in the tutorial were recorded with screen 
recording. They were given unlimited time to complete 
this section of the tutorial. This completed the first inter-
view session.

3. Students returned within a week for a second approximately 
2-h session, again with two parts:

a. Students completed Section 2 of UED (in which they 
designed and carried out simulated experiments), again 
with screen recording. They were given unlimited time to 
complete this section.

b. After completion, students were given a second version 
of the MV-EDAT (using a different prompt) including the 
follow-up interview.

A total of 42 students participated in the interviews, 14 per 
treatment. Three students in the ICWF treatment were removed 
from analysis because they never requested any feedback on 
their experimental designs in Section 2 and therefore could not 
be used to test for the effects of feedback, leaving a total of 39 
students in the study.

Split-class comparison of UED versions. The Individual sam-
ple was by necessity limited in size because each interview 
required extensive time and resources. To expand the data 
available to address the research questions we conducted a 
split-class study within an introductory biology class at a west-
ern U.S. masters-granting institution. The class consisted of 11 
sections of around 24 students (N = 259 total), with each sec-
tion receiving one of the three UED versions. The sections were 
split across two lecture instructors and five lab teaching assis-
tants. For practical reasons related to the class structure and the 
software architecture, we needed to assign each section to a 
treatment rather than randomizing treatments across all stu-
dents. With only 11 sections, randomizing treatment by section 
was likely to lead to the introduction of confounding factors. 
Rather, when assigning the sections to different versions of the 
UED tutorial, we worked to balance sections across lecture 
instructors, lab TAs, and lab start times to minimize additional 
variation between treatment groups (e.g., TAs with two sec-
tions would have each section assigned to a different treat-
ment). Data from this sample came from the EDCT and from 
student designs within the UED tutorial (Table 2).

The UED tutorial was delivered through SimBio’s SimUText 
System, a robust and widely-used software package for distrib-

uting simulation-based biology teaching materials (https://
simbio.com). The UED tutorial was assigned as homework, 
with credit given only for completion of the tutorial, not for 
correctness of responses within the tutorial. Before the UED 
assignment, another simulation-based module covering topics 
in evolution (SimBio’s Evolutionary Evidence) was assigned, so 
students had already overcome any logistical challenges to 
accessing the SimUText System. During the initial subscription 
process to the SimUText System students were asked for con-
sent to participate in research. When discussing results from the 
EDCT assessment, we include only data from consenting stu-
dents who completed all questions of the EDCT both before and 
after completing Section 1 of UED. When comparing experi-
ments designed in Section 2 of UED between treatments, we 
include only data from consenting students who completed 
both the Initial Experiment and the Follow-Up Experiment in 
Section 2. Students in the ICWF (with feedback) treatment who 
never requested feedback were removed so data from that 
treatment only included students who received at least one 
piece of feedback on their design. Some students completed 
both EDCT assessments, but not both experimental design 
activities and vice versa, so the students analyzed for those two 
data sets overlap but are not identical. We refer to this sample 
as our “Split-Class” sample (see Table 3 for sample sizes).

Larger-scale testing of UED. To probe the generality of our 
results, we provided the ICWF version of UED to 27 classes at 14 
institutions during the 2016/17 school year (total N = 1348 
consenting students). This version differed from those used 
above in that the EDCT was only placed as a posttest after Sec-
tion 1, but not as a pretest (in the interest of saving class time 
for instructors volunteering their classes). Of these 27 classes, 
we dropped three classes that had fewer than 10 consenting 
students each, along with any student who did not answer all 
questions on the EDCT, leaving a total of 24 classes and 1292 
consenting students. We included all these students when ana-
lyzing EDCT scores. Two of these classes did not use Section 2 
of UED, and several others had less than 10 students completing 
Section 2 of UED. Of the remaining 17 classes, only 648 individ-
ual students fully completed Section 2. We include only these 
648 students when analyzing experimental designs from the 
Initial and Follow-Up Experiments in Section 2. Data from this 
sample came from the EDCT posttest and from student designs 
within the UED tutorial, but unlike the other samples, there was 
only a single treatment for all students (the ICWF version). 
Thus, this sample cannot be used to test for treatment effects.

These classes came from a variety of institutions, including 
one community college, five liberal arts colleges, two masters 
and six doctoral-granting institutions. Four classes were for 
upper-level biology students, one was introductory environ-
mental science, and the rest were either majors or nonmajors 
introductory biology, with the number of consenting students 
ranging from 11–154 per class. Faculty were recruited through 
webinars offered via SimBio’s mailing list, and only institu-
tions whose own IRB committees approved the study were 
included in the data used here. Faculty was asked to assign 
UED for credit in their course, but otherwise was free to use it 
as they wished. We collected some demographic information 
from students, including whether they used the tutorial as 
part of a group or individually, and whether they used it in or 
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outside of class time. We refer to this sample as our “Larg-
er-Scale” sample.

To summarize, we had three experimental samples: Individ-
ual, Split-Class, and Larger-Scale, that each provided different 
subsets of data relating to our research questions. Tables 2 and 
3 provide an overview of what data was available from each 
sample.

Statistics
We collected a large amount of data from each student in the 
Individual sample, but statistically the sample is small, partic-
ularly when divided into the three treatments. We thus chose 
to analyze data from the Individual sample using a combina-
tion of randomization tests and standard parametric tests. 
Randomization tests can perform better than conventional sta-
tistics for small samples and when it is unknown whether the 
data has a normal distribution (Hesterberg et al., 2003; Craig 
and Fisher, 2019). We wrote randomization tests in Python 
(attached: UEDRandomization.py). For comparisons where 
we ran both parametric and randomization tests, the results 
were similar and we choose to only report the parametric 
results for conciseness.

To check for homogeneity of the samples, we compared the 
ratio of variance on the preassessment scores to that of the pos-
tassessment scores and it was suitably low (ratio = 1.66; Craig 
and Fisher, 2019). We used permutations of the data as is 
appropriate when looking for significance (Hesterberg et al., 
2003) with 10,000 permutations per test. Each permutation 
took the measured values and redistributed them randomly 
between students (see below). Where test statistics are two-
tailed, we took the absolute value of each calculated statistic. 
For a statistical significance level of 0.05, we interpret a result 
as significant if < 5% of the permutation data sets has a test 
statistic value equal to or higher than the actual data set.

To compare single values between groups, such as compar-
ing MV-EDAT scores between the Lizard and Fish prompts, 
scores were randomly redistributed between the Lizard and 
Fish categories during each randomization, and we used the t 
statistic to compare the groups.

To compare pre- to postassessment scores on the MV-EDAT, 
we pooled all pre- and postassessment scores, randomly redis-
tributed them between the pre- and postcategories, and then 
recalculated pre to post differences. Although no statistical dif-
ference was found between the Lizard and Fish prompts, we 
also controlled for differences in prompt difficulty by conduct-
ing a second randomization test where values were randomly 
redistributed only within the same prompt type (i.e., scores on 
the Lizard prompt were randomly assigned to other Lizard 
prompts and same for Fish). To control for differences among 
individual students, we separately tried a third randomization 
test where pre/post values were only redistributed within each 
student (i.e., each student had their actual pre- and postscores 
randomly mixed, but scores were not mixed between students). 
Neither controlling for interview prompt nor controlling for stu-
dent differences changed our results, so for simplicity we report 
only the results for randomizing fully across all students and 
both prompt types.

We performed all parametric analyses in RStudio version 
2023.06.0+421 (R Core Team, 2023). We used repeated-mea-
sures ANOVA (RMANOVA) to compare Split-Class and Individ-

ual pre- to post performance on the EDCT, and Individual pre- 
to post performance on the MV-EDAT. We also compared 
pretest data across the three treatments in the Split Class sam-
ple using a single factor ANOVA. We checked all data for nor-
mality using Shapiro-Wilk tests and Q–Q plots and, in the case 
of repeated measures, checked for sphericity using Mauchly’s 
test of sphericity.

Differences on binary variables (student receiving perfect 
score on Experimental and Biology Scores) were tested using 
Fisher’s exact test in r 3.1.1.

We calculated normalized change scores from pre to post 
assessments according to Theobald and Freeman (2014). 
Whenever we ran multiple analyses on the same data we 
adjusted the alpha level using a Bonferroni correction. We cal-
culated effect size as generalized eta-squared (η2

g; Lakens, 
2013).

RESULTS
Students were comparable in initial experimental design 
conceptual knowledge across all samples
To check for any differences between treatments within a sam-
ple, we compared student performance on the two pre-UED 
assessments – the EDCT and MV-EDAT. There was no signifi-
cant difference between EDCT scores of students in the three 
treatments of either the Individual or the Split-Class sample 
(F[2162] = 0.766, p > 0.05). The sample size precludes us from 
knowing whether there might have been smaller undetected 
differences but we have no evidence of any large differences 
between participants either within or between samples (latter, 
unpublished data).

We do not have EDCT pretest data for the Larger-Scale 
sample, but we compared posttest (after UED section 1) EDCT 
data. Both Split-Class and Individual samples were in the mid-
dle of the range of the scores seen with the Larger-Scale 
classes (Figure 3). We saw no clear trends in the larger-scale 
EDCT data with class level, institution type, or class size (data 
not shown).

We also compared preassessment scores on the MV-EDAT 
between treatments in the Individual sample. Although preas-
sessment scores were a bit higher in the ICWF treatment than 
the others (4.0 ICWF; 2.6 ICNF; 3.1 LCNF), none of the differ-
ences were significant (p > 0.17 for all comparisons with ran-
domization test; unpublished data).

Higher constraint first section of UED has almost no effect 
on students’ conceptual knowledge of experimental 
design
To assess student learning from the higher constraint first section 
of UED, we compared students’ pre- and posttest scores on the 
EDCT (taken before and after section 1 of UED) using a repeat-
ed-measures ANOVA. There were some minor departures from 
normality in the data, but the assumption of sphericity was met 
in both the Split Class and Individual Class data. While posttest 
scores were slightly higher in both the Individual and the Split-
Class samples, the differences were very small based on any stan-
dard interpretation of effect size (Table 4; Figure 3). Treatment 
had a small but significant effect across both time points in the 
Split class, but we did not find evidence of a treatment effect in 
the Individual Class data. We did not see a significant interaction 
between the treatment and time in either sample.
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Student’s experimental design skills improve after using 
UED, as measured by MV-EDAT transfer task
In the Individual sample, we saw overall improvement in stu-
dents’ experimental design skills after completing UED as mea-
sured on the MV-EDAT independent experimental design task 
(Table 4). The data violated both normality and sphericity 
assumptions. Depending on the sphericity correction, treatment 
is or is not significant; we took a conservative approach and 
consider it not significant (Table 4). The experiments that the 
students designed on paper and described to interviewers were 
scored on a 0–2 scale on six experimental design elements, for 
a maximum possible score of 12. The Experimental Design 
score for students summed across all treatments improved sig-
nificantly from an average of 4.8 on the preassessment to an 
average of 7.8 on the post assessment, showing a large effect 

size of 0.28 η2
g (or Cohen’s d = 1.0) (Table 4; Figure 4). Most 

students (30 of 39) showed an increased score from pre to post. 
When examined independently, we saw student improvement 
within each of the three treatments (data not shown) so no one 
treatment was driving this effect.

Three of the individual experimental design elements in the 
MV-EDAT – Uses Systematic Variation, Addresses Hypothesis, 
and Includes Replication – likewise, after Bonferroni correc-
tion (α = 0.008), showed highly significant improvement 
between pre- and postassessments for students in all treat-
ments (Figure 5; p < 0.001 for each using randomization tests). 
The other three elements – Includes Variables Held Constant 
(p = 0.055), Includes Dependent Variable (p = 0.25), and 
Includes Experiment Duration (p = 0.068) – were not signifi-
cant at the 0.05 level.

Complexity of designed experiments decreased.  To probe 
how students improved their experimental design skills by com-
pleting UED, we looked in more depth at the experimental 
design elements that showed improvement. The elements 
Includes Replication and Addresses Hypothesis are both rela-
tively straightforward – that is, after completing UED, more stu-
dents replicated all treatments in their MV-EDAT designs, and 
did a better job addressing the stated hypothesis. The change in 
the Systematic Variation element was more nuanced. We 
scored students well on Systematic Variation if they changed 
only one variable per treatment, except for where they explic-
itly test two variables and their interactions, and they included 
appropriate control(s). We intentionally included three poten-
tial explanatory variables in the MV-EDAT prompts, so that stu-
dents could choose to test more than one variable in the exper-
iments they designed. They could do this in one of two ways 
– either design three parallel experiments (one for each vari-
able), or a single experiment that included all three variables. 
The latter is a more challenging experimental design, because 
this would require treatments with all combinations of the 
three variables for a fully balanced design.

On the preassessment, 79% of students designed experi-
ments to test more than one variable (Figure 6). Of these, the 
majority (77%) attempted to test multiple variables in a single 
experiment, rather than parallel experiments. This changed in 
the postassessment, where fewer students (51%) designed 
experiments to test more than one variable, with only half of 

FIGURE 3. Scores on the EDCT from Individual and Split-Class 
samples. Students in the Individual and Split-Class samples 
completed EDCT pre- and post-UED Section 1; Larger-Scale 
sample students completed it post only. Individual and Split-Class 
samples: Centerlines show the medians; box limits indicate the 
25th and 75th percentiles; whiskers extend to the 5th and 95th 
percentiles; values outside these percentiles are shown as 
individual points; means are indicated by “+” symbol. The 
Individual and Split-Class samples were comparable in their pre 
scores (p = 0.17) and both showed very small increases between 
pre and post.

TABLE 4. Summary of repeated-measures ANOVA (RMANOVA) tests for main and interaction effects of treatment and time on student 
performance on the MV-EDAT and split-class EDCT from individual and split-class populationsa

Sample Data Test F Statistic p value Effect size

Individual EDCT RMANOVA Treatment F(2, 24) = 0.052 >0.05 η2
g = 0.003

Time F(1, 12) = 9.042 <0.05 η2
g = 0.01

Treatment*Time F(2, 24) = 1.363 >0.05 η2
g = 0.004

MV-EDAT RMANOVA Treatment F(2, 20) = 3.693 >0.05b η2
g = 0.119

Time F(1, 10) = 21.656 <0.001 η2
g = 0.278

Treatment*Time F(2, 20) = 0.347 >0.05 η2
g = 0.007

Split Class EDCT RMANOVA Treatment F(2, 94) = 22.1 <0.001 η2
g = 0.04

Time F(1, 47) = 10.546 <0.001 η2
g = 0.009

Treatment*Time F(2, 94) = 1.678 >0.05 η2
g = 0.002

aEDCT = Experimental Design Competency Test; MV-EDAT = Multi-variable Experimental Design Ability Test; η2
g = Generalized eta-squared; bold p-values are significant 

at the 0.05 level. 
bp value corrected due to violation of sphericity; before correction, was < 0.05.
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ple, most students (over 80% in both pre- 
and postassessment) could tell us when 
asked what they would measure, or what 
variables they would hold constant 
between groups in their experiment, but 
about 40% of students did not explicitly 
include a dependent variable or potentially 
confounding variables in their description 
(either verbal or written) of their experi-
mental design, even on the postassessment.

Comparisons between treatments 
required larger sample and different 
analyses
The strong and significant overall improve-
ment in performance on the MV-EDAT 
across all treatments indicates that some-
thing about the UED tutorial is working to 
help students improve on these skills. To 
address our research questions about the 
role of feedback and constraint required a 
comparison between treatments. Ideally, 
we would have compared changes in 
MV-EDAT scores between treatments. The 
small sample size in the Individual sample, 
though, precludes statistically distinguish-
ing between factors that might be leading to 
that improvement. So, with this context 
that a far-transfer assessment shows 
improved experimental design skill, we 

focus the rest of our analysis on the experiments students per-
formed within UED. Crucially, the Split-Class sample provides 
larger data sets from the in-tutorial experimental designs and we 
can thus use Split-Class data to better test the roles of feedback 
and constraint.

Feedback affects students experimental design practices
To test the effect of feedback on aiding student learning, we 
compared the ICWF and ICNF treatments in the Split-Class 
sample. The only difference between those UED versions was 
the presence or absence of feedback in the Initial Experiment 
that students perform. To compare, we examined the number 
of students who received a perfect Experimental Score on their 
Follow-Up Experiments, and separately the number who 
received perfect Biology Scores.

Students in the ICWF treatment were much more likely to 
have perfect in-tutorial Experimental Scores than those in the 
ICNF treatment, supporting the inference that feedback aids 
student learning of experimental design (Table 5; Figure 7B; 
odds ratio = 4.0).

Students did not receive direct feedback on the components 
of the Biology Score when making their in-tutorial experimen-
tal designs, but they could learn appropriate settings by observ-
ing the simulation. In the Split-Class sample, we saw a signifi-
cant difference on Biology Score between ICWF and ICNF in the 
Initial Experiment, but not in the Follow-Up Experiment (data 
not shown).

We see similar patterns in the Individual sample where a 
higher proportion of students in the ICWF treatment had per-
fect Experimental Scores than in the ICNF treatment (Table 5; 

these testing multiple variables in a single experiment. Thus, 
some of the improvement in the Systematic Variation score is 
because students chose to test only a single variable in the 
experiment they designed. But even among those students test-
ing more than one variable in the post assessment, there was 
evidence of improvement in their experimental design. On the 
preassessment, the mean Systematic Variation score of those 
students who attempted to test only one variable was 1.75, 
compared with a mean of 0.84 for those who attempted to test 
more than one variable. On the postassessment, the difference 
was half as much – an average of 1.84 for those who attempted 
to test one variable, compared with 1.45 for those who 
attempted to test more than one (Figure 6).

Probing interview questions showed no net change in declar-
ative or conceptual knowledge. After students described the 
experiment they designed based on the MV-EDAT prompts, we 
followed up with probing questions that were designed to elicit 
their declarative and conceptual knowledge. Students did not 
show any apparent net change in their responses to the eight 
probing interview questions that we analyzed. For most of the 
questions, most student answers in the preassessment were 
scored as one (partial evidence of understanding) or two (more 
complete evidence of understanding), with very few scores of 
zero, and the proportions of student scores changed very little in 
the postassessment. This suggests that the students interviewed 
came in with a fairly good baseline level of declarative and con-
ceptual knowledge, but this contrasts with their lower level of 
procedural knowledge, as assessed by the actual experiments 
they designed in response to the MV-EDAT prompts. For exam-

FIGURE 4. Scores on the MV-EDAT in the Individual population (n = 39), before and after 
completing the UED tutorial. Experiments that the students designed based on the 
MV-EDAT prompts were scored for six design elements on a 0–2 scale, for a maximum 
possible score of 12. The total score for students in all treatments improved significantly 
(p < 0.01 using randomization test; effect size η2

g
 = 0.278). First panel: paired pre- and 

postscores for each student in all three treatments (n = 39); 30 students scored higher on 
the post assessment, two showed no change, and scores decreased for seven students. 
Line thickness indicates number of students with each pre-post score (e.g., two students’ 
score increased from 1 on the preassessment to six on the post; four students’ score 
decreased from eight to seven). Second panel: normalized change (mean 0.41, indicated 
by + symbol); centerline at the median; box limits at 25th and 75th percentiles; whiskers 
extend to 5th and 95th percentiles.
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Figure 7A; odds ratio = 3.4). There were no patterns in that 
sample for Biology Score.

Change in constraint has little effect on student 
experimental design practices
To test the effect of constraint on aiding student learning, we 
compared the ICNF and LCNF treatments in the Split-Class 
sample. The only difference between these treatments was 
the degree of constraint (IC; LC) imposed on the experimen-
tal design activity. More Split-Class students had perfect 
Experimental Scores in the ICNF treatment than the LCNF 
treatments, but the difference was not significant (Table 5; 
Figure 7B).

When looking at Biology Score in the Split-Class sample, a 
higher proportion of those in the ICNF treatment incorporated 
good natural history into their designs than those in the LCNF 
treatment. This difference was significant on the Initial but not 
the Follow-Up Experiment (data not shown).

Again, the Individual sample showed a similar pattern. A 
higher proportion of ICNF students had perfect Experimental 
Scores compared with LCNF (Table 5; Figure 7A). There were 
no patterns for Biology Score.

We thus have no evidence that the difference in constraint 
affects students’ learning of core experiment design skills, but 
there may be an effect on students’ ability to properly incorpo-
rate details of the experimental system into a good experimen-
tal design.

Constraint and feedback have small effects on 
time-on-task
One might imagine that time on task would be different between 
the treatments, and this could affect our results. Median time-
on-task for the second, open-ended section of UED varied a bit 
between treatments in the Individual sample (for which we 
have the most precise data on time spent on the section). Stu-
dents in the ICWF treatment took a median of 58 min to com-
plete the section, as compared with 61 min for ICNF and 66 min 
for LCNF. We assume that most of this time difference happened 
within the experimental design activity, the only part that was 
different between treatments. This interpretation is supported 
by the fact that students in the ICWF treatment tended to do 
fewer experimental runs (combining all runs for both the Initial 
and Follow-Up Experiments) than students in the other 
two treatments, in both the Individual (ICWF: 2.73 ± 1.19 SD, 

FIGURE 5. Scores for the six individual experimental design elements of the MV-EDAT in the Individual sample (n = 39), before and after 
completing UED. Bars show the proportion of students in all treatments combined scoring 0 (light gray), 1 (medium gray), or 2 (black) on 
that design element pre and post. The scores for students in all treatments were significantly higher (p < 0.001) on the post assessment 
compared with the pre for three of the individual design elements – Systematic Variation, Includes Replication, and Addresses Hypothesis; 
the other three elements – Includes Variables Held Constant (p = 0.055), Includes Dependent Variable (p = 0.25), and Includes Duration 
(p = 0.068) – were not significant.
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ICNF: 3.36 ± 1.45, LCNF: 3.21 ± 1.63) and Split-Class (ICWF: 
2.29 ± 0.59, ICNF: 2.52 ± 0.96, LCNF: 2.89 ± 1.48) samples. 
Thus, higher constraint and feedback likely aided students in 
completing the key design activity more quickly and enabled 
them to learn from the feedback directly rather than relying on 
trial and error.

Split-class and Individual students perform similarly to 
students in other classes
The Individual sample was relatively small and all came from 
one metro area. The Split-Class sample was all from one class at 
one school, albeit in a different metro area. To draw general 
conclusions from those results, it would be nice to have evidence 

that those students were not outliers in their experimental 
design learning. The Larger-Scale sample provides some evi-
dence for this.

The Larger-Scale sample came from 17 classes at institutions 
around the United States. All students used the ICWF version of 
UED, so we cannot use these data to probe treatment effects, 
but we can compare the performance of this sample to the ICWF 
treatment in the two other samples. In the Larger-Scale sample, 
66% of students designed an experiment that received the max-
imum Experimental Score of three (in individual classes, the 
proportion of students with scores of three ranged from 30–- 
83%), and 75% received the maximum Biology Score of two 
(classes ranged from 56–100%) on the first Follow-Up Experi-
ment they ran. The values for the equivalent ICWF treatments 
in the Split-Class sample (Experimental 69%; Biology 80%) are 
squarely in the middle of these ranges, and the Individual sam-
ple values (Experimental 80%; Biology 80%) are higher but 
also within the range, indicating that neither of those samples 
are outliers in their performance on these assessments.

Correlations between assessments are present but vary in 
strength for different elements
We looked for correlations between the results from the three 
assessments we used in this study as an indication of whether 
they were measuring skills similarly. We did this knowing that 
there are deliberate differences in what each assessment 
measures.

The MV-EDAT and the in-tutorial experimental designs 
assess overlapping but not identical skills. Both assess student 
ability to use systematic variation, to replicate their treatments, 
and to address their chosen hypothesis, so we compared those 
specific skills between the two assessments. Of these, the two 
assessments are most parallel in their presentation and scoring 
for the skill of replication.

We found significant correlation between MV-EDAT and the 
in-tutorial experiments for replication. Over half the students 
(23/39) showed similar skill levels on both assessments (high, 
medium, or low on both) for replication (p < 0.01, Fisher’s 
exact test).

By contrast, for systematic variation there was little correla-
tion between MV-EDAT and in-tutorial design performance. 
The MV-EDAT had many more degrees of freedom (e.g., the 
prompt suggested three possible causal variables, and there 

TABLE 5. Comparing In-module experiments between treatmentsa

Comparison
Treatment 1  

(perfect/total)
Treatment 2  

(perfect/total) p values Odds ratio

Split-Class – testing feedback
 Experimental Score Follow-Up Expt. ICWF (40/52) ICNF (29/64) p < 0.01 4.0
 Biology Score Initial Expt. ICWF (46/52) ICNF (43/64) p = 0.008 3.7
 Biology Score Follow-Up Expt. ICWF (45/52) ICNF (49/64) p = 0.23 2.0

Split-Class – testing constraint
 Experimental Score Follow-Up Expt. ICNF (29/64) LCNF (16/44) p = 0.43 1.5
 Biology Score Initial Expt. ICNF (43/64) LCNF (19/44) p = 0.02 2.7
 Biology Score Follow-Up Expt. ICNF (49/64)) LCNF (27/44) p = 0.13 2.0

aComparison is of students who received perfect scores on each component of experimental design, shown as a ratio to total number of students per sample. Feedback 
tests compare ICWF to ICNF treatments; Constraint tests compare ICNF to LCNF. Comparisons use Fisher’s exact test.

FIGURE 6. Systematic Variation score by number of variables 
tested in the MV-EDAT. Students are divided into those who 
designed experiments testing a single variable (Tested 1) or more 
than one variable (Tested >1), and the bars show proportion of 
students scoring 0 (light gray), 1 (medium gray), or 2 (black) on 
Systematic Variation in the pre- and postassessment. More 
students (n = 31) tried to test multiple variables on the preassess-
ment than on postassessment (n = 20), and those who attempted 
to test more than one variable scored lower on Systematic 
Variation. The gap in Systematic Variation scores between students 
manipulating one versus multiple variables was twice as much in 
the pre than in the post, suggesting that students learned to test 
fewer variables and/or when testing multiple variables, to do so 
more systematically.
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were no suggestions about how to group or house the animals 
being tested).

There was also no significant correlation for whether stu-
dents could fully match their hypothesis to their experimental 
design (p = 0.22, Fisher’s exact test, comparing pretutorial 
MV-EDAT and Match Hypothesis score for the Initial Experi-
ment). This is somewhat confounded, though, because in the 
tutorial, the page where students choose their first hypothesis is 
separated by several pages and multiple activities from where 
they conduct their Initial Experiment, while in the MV-EDAT 
there was no separation. We do note that in both the MV-EDAT 
(pretutorial) and the Initial in-tutorial experiment, most but not 
all students were able to fully match their hypothesis to their 
experiment in both Individual and Split-Class samples 
(MV-EDAT pretutorial = 61%; Individual Initial Experiment = 
50%; Split-Class Initial Experiment = 58%), indicating some 
consistency in this skill between the assessments.

The questions in the EDCT were written to target the learn-
ing outcomes focused on in Section 1 of the UED tutorial, 
which were focused on declarative/conceptual knowledge of 
experimental design, mostly at the lower (Remember and 
Understand) levels of Blooms Taxonomy (Remember and 
Understand), while the experiments in Section 2 were designed 
to assess students’ procedural knowledge of these concepts 
(i.e., the Apply and Create levels of Blooms). We compared 
total EDCT posttest score against a sum of each student’s 
Experimental, Biology, and Match Hypothesis scores on their 
experiments in Section 2. As scores on the in-tutorial experi-
ments varied by treatment, we did separate comparisons 
against each treatment, using data from the Split-Class sam-
ples. Correlation between the EDCT and in-tutorial scores 
ranged from low (r2 = 0.3) for ICWF to virtually nonexistent 
for the other two treatments.

FIGURE 7. Experimental Scores for the Follow-Up Experiments designed by students in 
Section 2 of the UED tutorial, by treatment. The components of the Experimental Score 
were: systematic variation (score 0 or 1); appropriate controls (score 0 or 1); and replica-
tion (score 0, 0.5, or 1), for a total possible score of 3. Effect of feedback: a higher 
proportion of students in the ICWF treatment achieved perfect Experimental Scores of 3 
compared with the ICNF treatment in both the Individual (A) and Split-Class (B) sample. 
The difference is significant in the Split-Class sample (p = 0.0006 with Fisher’s exact test; 
odds ratio = 4.0) and follows the same pattern in the Individual sample (sample was 
underpowered for statistics; odds ratio = 3.4). Effect of levels of constraint: more students 
in the ICNF treatment achieved perfect scores compared with the LCNF treatment, but 
the difference was not significant.

In the Individual sample, we compared 
posttest EDCT and MV-EDAT. There was 
no correlation between scores on those 
assessments.

DISCUSSION
Active learning is widely accepted as good 
practice in science education after so many 
studies have shown active approaches to 
be superior to passive approaches in teach-
ing (Freeman et al., 2014). But simply 
claiming to use active learning practices is 
not guaranteed to result in improved 
learning (Andrews et al., 2011), and cer-
tain active learning practices are more 
effective than, or better when combined 
with, others (e.g., Nehm et al., 2022). The 
questions now have moved beyond com-
paring active and passive learning to 
research on what particular aspects of an 
active learning approach lead to effective 
learning. Pushing this research forward is 
particularly important for complex con-
cepts and skills which are harder to mea-
sure and thus less likely to have developed 
clear guidance. In this study, we aimed to 
probe what design features of an activity 

to teach a complex biological skill – experimental design – led 
to increased learning. In particular, we look at the effects of 
feedback and constraint on learning in a digital inquiry-driven 
tutorial called UED.

The UED tutorial is effective at teaching experimental design 
skills, with large learning gains among college biology students 
(η2

g effect size = 0.28; Cohen’s d effect size = 1.0) as measured 
by our independent assessment of experimental design ability, 
the MV-EDAT (derived from the EDAT; Sirum and Humburg, 
2011). We do not have a comparison group of students who did 
not use UED in this study, so we draw no conclusions about 
whether UED is more or less effective than an equivalent use of 
time with another experimental design activity. We do note, 
though, that the learning gains we measured compare favor-
ably to other activities designed to teach the experimental 
design process. Using the similar Expanded-EDAT assessment, 
Brownell et al. (2014) report an effect size of Cohen’s d = 0.36 
from a one-class period pencil-and-paper experimental design 
activity, while semester long courses with a focus on experi-
mental process report effect sizes (measured with Cohen’s d) 
from 0.38 (Abdullah et al., 2015) to 0.99 (Shanks et al., 2017). 
Thus, it seems likely that UED is at the least equivalently effec-
tive to other possible activities designed to teach similar skills.

Within the context of demonstrating that UED is an effec-
tive activity for learning experimental design skills, our study 
tried to tease out what features were most responsible for 
these learning gains, focusing on constraint and feedback. The 
metrics we have for this are not perfect. Ideally, we would 
have used our MV-EDAT data to compare treatments, but the 
interviews were too time-intensive to provide large enough 
sample sizes to allow for robust comparisons. We, therefore, 
draw many of our conclusions from comparing the experi-
ments that students designed within Section 2 of the tutorial 
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in the three treatments of the Split-Class sample. We argue 
that between-treatment differences in student performance on 
the in-tutorial experimental design tasks in this sample likely 
reflect differences in learning. This argument is supported by a 
correlation between the in-tutorial experimental designs and 
the MV-EDAT data on at least one measure (Replication), and 
some similarity in a second measure (Match Hypothesis), indi-
cating that these two assessments measure related, though not 
identical, skills.

Feedback contributes to learning within an intermediate 
constraint activity
Our Split-Class data clearly shows students who received spe-
cific feedback on the experimental design task designed better 
experiments in UED, as measured by their Experimental Scores, 
which summed their score for systematic variation, appropriate 
controls, and replication of all treatments in experiments 
designed within the tutorial. The Experimental Score was 
higher in the ICWF treatment, where students received feed-
back, than in the ICNF treatment, where they did not (Figure 7). 
We saw this higher Experimental Score in the Follow-Up Exper-
iment where neither treatment provided any feedback, so it was 
not just a function of students responding directly to the imme-
diate feedback they received, but represented learning that 
lasted at least a short time and transferred to a similar activity.

Students did not receive feedback on the aspects of their 
design that went into the Biology Score (supplying enough 
plants to feed the Simploids and running the experiment long 
enough to see the disease progress), and although the students 
in the ICWF treatment had higher Biology Scores in the Initial 
Experiment, in the Follow-Up Experiments there were no differ-
ences between the ICWF and ICNF treatments. This lack of dif-
ference on the Follow-Up Experiment supports the impact of 
feedback on performance, because students in the two treat-
ments ended with equivalent scores for an aspect of the experi-
mental design where we did not provide direct feedback.

That feedback helps students is not a surprise, especially on 
learning higher-order tasks (Van der Kleij et al., 2015). While 
our study was not designed to test different types of feedback, 
our effect size was large compared with many other studies of 
feedback effectiveness (Van der Kleij et al., 2015; Wisniewski 
et al., 2020). These results thus lend support to previous 
research indicating immediate, elaborated feedback that 
includes information on what to do next is effective (e.g., 
Brooks et al., 2019; Wisniewski et al., 2020), especially for 
higher-order tasks (Van der Kleij et al., 2015). More novel to 
this study is showing those characteristics of feedback remain 
effective for automated feedback on higher-order, intermediate 
constraint activities such as the simulation-based activities in 
UED, where providing feedback is challenging and few previous 
studies have been conducted. The idea for the UED experimen-
tal design activity originated with an earlier activity on natural 
selection called Darwinian Snails (Abraham et al., 2009, Clarke-
Midura et al., 2018) which had a much less constrained experi-
mental design activity without any feedback. In our iterative 
testing of various learning modules with individual students 
and classes, we have found that by adding some constraints to 
an activity while still retaining much of the open-ended nature 
of a learning environment, as we have done in UED, we are able 
to devise algorithms to automatically provide specific feedback 

(Meir, 2022). Our results here show this is worth doing as the 
feedback clearly improves student performance and, we infer, 
student learning. In particular, there is a larger difference in 
student scores on the transfer task (the MV-EDAT) on skills for 
which explicit feedback was provided in the tutorial (e.g., Sys-
tematic Variation, Includes Replication, and Addressing 
Hypothesis) compared with those for which they did not receive 
feedback (Figure 5).

Small changes in constraint have little effect on learning
When teaching complex scientific skills, how much freedom 
should one provide students within a learning environment? 
There are arguments in favor of both heavily constraining the 
student experience to make it easy for students to perform the 
skill (“structured inquiry” as defined by Colburn, 2000; Sweller 
et al., 2007), and on the other extreme providing a largely dis-
covery-based approach where students are given a space in 
which to explore and discover largely for themselves (“open 
inquiry”). Many activities provide constraint intermediate 
between those extremes, but even within the intermediate 
range, it’s not clear where on that axis learning best takes place.

Here we tested how varying constraints within an interme-
diate range might affect learning, and for the most part, we find 
little effect. We would consider both ICNF and LCNF treatments 
to be intermediate in degree of constraint compared with other 
activities we and other groups have designed. Within this range, 
we see only minor effects on learning. While there was a trend 
towards Experimental and Biology Scores being lower in LCNF, 
aside from Biology Score in the Initial Experiment, the differ-
ence was not significant. It is possible that with a larger sample 
those trends would have risen to significance, but from our 
results we conclude that even if an effect is there, it is not large.

This contrasts with other data comparing a much broader 
range of constraint on question types. In a separate, related 
study, we compared questions written in open-ended (short 
answer) versus intermediate constraint formats, for instance fill-
ing in blanks of sentences from predefined sets of words and 
phrases (“LabLibs”; Meir et al., 2019). There, we found that stu-
dent learning increased when they were asked questions in an 
intermediate constraint format compared with the same mate-
rial using open-ended questions, in some cases even without 
specific feedback on their answers. Other research groups have 
also opted for intermediate levels of constraint in both learning 
and assessment environments (e.g., Blanchard et al., 2010; 
Gobert et al., 2012). Anecdotally, when we watched students 
use the much lower constraint experimental design activity in 
the Darwinian Snails module from which UED evolved, it 
appeared that many (perhaps most) did not take full advantage 
of that environment to truly explore. This aligns with data show-
ing students using intermediate constraint questions can express 
their thinking with more clarity than in essay questions (Meir 
et al., 2019). Constraint may guide students towards more 
productive thinking and exploration in open environments. Our 
results here are consistent with previous work showing interme-
diate constraint activities are helpful in promoting learning, but 
do not offer much evidence in favor of the hypothesis that level 
of constraint matters.

Instead, we take these results as an invitation to consider 
other factors when developing learning tools. Rather than 
worrying about direct effects on learning of different levels of 
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constraint, the primary considerations within the broad inter-
mediate region may be indirect effects on other aspects of the 
environment, such as ability to provide feedback and learning 
efficiency. To promote discovery learning, one might try to tar-
get the least constrained environment for which one can still 
devise algorithms to provide good feedback. In this light, as 
algorithms for providing feedback improve, it would be inter-
esting to repeat the experiments we have done here comparing 
intermediate and low constraint environments where both have 
immediate, specific feedback. In the other direction, we note 
that students in the LCNF treatment took longer to complete 
the tutorial, without any evidence of greater learning. Assum-
ing time on task tracks with extraneous cognitive load, one 
might also reasonably increase the constraint on the environ-
ment to maximize learning efficiency (Paas and Van Merrien-
boer, 1993). Increasing constraint enough to provide auto-
mated feedback and scoring benefits instructors as well, 
allowing them to use activities in larger classes with less effort 
(Table 1). Thus instructional designers might manipulate con-
straint higher or lower to maximize learning based on other 
factors dependent on the constraint, without worrying about 
degree of constraint itself impacting learning.

Results may apply across a broad range of undergraduate 
students
While we were not able to conduct controlled comparisons in 
more than one class, we were able to compare data from the 
ICWF version of UED gathered from a broad range of classes 
across the United States. There were wide variations among 
student scores between classes, as one might expect. But the 
results from our Individual and Split-Class samples fit well 
within the range seen in other classes on both in-tutorial exper-
imental design and scores on the EDCT (our test of conceptual 
knowledge), suggesting that our results here may apply to a 
broad range of students. Anecdotally, we have subsequently 
heard from instructors who feel their students did better on 
other experimental design tasks in their classes after having 
completed the UED tutorial, supporting this conclusion. The 
variation between classes may indicate that different popula-
tions would benefit from different amounts of feedback and 
constraint. As we argue elsewhere (Meir, 2022), changing the 
level of constraint in the learning environment might be a par-
ticularly powerful lever to adjust activities to maximize student 
learning for different populations.

Performance-based assessment is important for complex 
knowledge and skills
We have a few lines of evidence of a disconnect between stu-
dents’ declarative/conceptual knowledge of experimental 
design (i.e., defining terms and explaining concepts) and their 
procedural knowledge (i.e., designing an experiment). For 
example, there was a relatively high baseline performance on 
both the EDCT and interview probing questions, and relatively 
little change in performance on those assessments from pre to 
post (EDCT – Figure 3; interview questions – unpublished 
data). On the other hand, we have solid evidence of students 
improving in their procedural knowledge, as assessed by the 
MV-EDAT (Figures 4 and 5) after going through the process of 
designing and running an experiment (as in Section 2 of UED). 
We also have evidence that immediate feedback, in particular, 

improved their procedural knowledge and experimental design 
skills, as measured by the in-tutorial experimental designs 
(Figure 7). Overall, we saw more change in experimental 
design skills than in declarative and conceptual knowledge. It is 
also noteworthy that the two performance-based assessments 
(the MV-EDAT and the in-tutorial experimental designs) had 
some correlation, but we saw low to no correlation between the 
EDCT and either performance-based assessment.

This is not to suggest that teaching declarative and concep-
tual knowledge is unnecessary for developing higher-level 
skills. Indeed, we learned from earlier iterations of experimen-
tal design activities that without establishing a common base-
line of vocabulary and a review of basic conceptual principles, 
students were not always able to benefit from feedback that 
relied on this declarative and conceptual knowledge. But, if 
improving performance is the goal, performance-based activi-
ties are important for building complex skills, and procedural 
knowledge is best assessed with a performance-based assess-
ment such as the in-tutorial experiment or the MV-EDAT (or 
other versions of the EDAT).

There are numerous studies showing highly-constrained 
assessments such as multiple choice-based tests miss aspects of 
understanding and skills that less constrained assessments cap-
ture (e.g., Nehm et al., 2012; Beggrow et al., 2014; Hubbard 
et al., 2017; Uhl et al., 2021). Designing performance-based 
assessments with intermediate degrees of constraint may have 
benefits. Asking students to complete tasks with some con-
straints, such as the experimental design tasks in UED, may 
help gauge student skill level, and help focus in on exactly 
where a student is confused in ways that higher constraint 
assessments, and potentially even low-constraint assessments, 
cannot, while also allowing those assessments to be autoscored 
(Hubbard et al., 2017; Meir, 2022).

Study limitations leave open other interpretations
Our own experimental design includes some inherent limita-
tions, so the conclusions we reach above come with caveats.

While we validated the EDCT in several ways, this study was 
the first time it was used and there is a reasonable chance that 
it simply is not sensitive enough to distinguish large changes in 
understanding in the samples in our study. The Wright map, for 
instance, indicates that many items on the EDCT were easy for 
the samples we studied.

This study was also the first time that our revised version of 
the EDAT (the MV-EDAT) was used. We designed the MV-EDAT 
to fit our assessment needs, by creating prompts with nonhu-
man contexts and also deliberately suggesting more than one 
independent variable that could be tested, in order to assess 
how students deal with the realistic scenario of designing 
experiments with multiple putative causative independent vari-
ables. We also decided to implement the MV-EDAT with accom-
panying probing questions because we wanted to assess their 
declarative and conceptual understanding of concepts, which 
may not be apparent from what they volunteer on paper if they 
leave key concepts out of their experimental design description 
(e.g., what variables they would hold constant between treat-
ments). Based on our results, we can recommend the use of the 
MV-EDAT prompts we designed in contexts where they might 
be useful (e.g., in a class focused on nonhuman rather than 
human biology, and when particularly interested in how 
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students face the challenge of designing experiments with mul-
tiple independent variables). However, we did not really see an 
added benefit to pairing the MV-EDAT with interviews designed 
to probe student declarative and conceptual knowledge. This 
level of knowledge is well suited for constrained choice tests, 
like the EDCT we developed. When implementing any version 
of the EDAT (e.g., the original EDAT, the Expanded EDAT, or 
our MV-EDAT), researchers or instructors should understand 
that procedural knowledge is what is being tested. Our experi-
ence with the interviews shows that students not including ele-
ments in their experimental design do not mean they cannot 
identify or even define or explain that element. Our experience 
just reinforces the importance of identifying what level of 
knowledge you are interested in assessing and choosing the 
appropriate assessment for that level.

We also acknowledge that many of our conclusions compar-
ing among treatments may be limited because they are based on 
an assessment task within the activity itself, rather than the 
more independent assessment MV-EDAT. Given the consistency 
on the within-tutorial assessments between the Individual and 
Split-Class samples, we think it likely that were we able to 
devote the resources to complete the full interview protocol with 
a larger number of students, we would have seen the same 
results in the MV-EDAT based on nonsignificant trends in that 
data. It is certainly possible, however, that feedback only affected 
students’ ability to complete the experimental design tasks 
within UED, and did not have a differential effect on their ability 
to transfer that learning to the other context represented in the 
MV-EDAT. Supporting our interpretation, though is that the ele-
ment scored most similarly between the in-tutorial exercises and 
the MV-EDAT (Replication) was correlated between the two.

CONCLUSIONS
While there is no doubt that active learning approaches are crit-
ical for mastering core scientific skills and knowledge, the 
phrases “active learning,” “student-centered teaching,” and 
other similar language encompass a broad range of activities. To 
determine which approaches within that range are most effec-
tive in different situations requires experiments that test alterna-
tives of how to design those activities (Freeman et al., 2014). 
Here we show that two key axes upon which learning activities 
can vary, feedback and constraint, are both likely to be import-
ant in maximizing learning of a core skill in biological science, 
although for different reasons. We show that immediate, specific 
feedback is highly effective for helping students learn. Our data 
suggests that some variation in constraint, at least within the 
intermediate range, may not have a large direct effect on learn-
ing. But because constraint allows feedback and has other indi-
rect effects, degree of constraint is useful to consider as a way of 
maximizing learning through other avenues. While our research 
focused on experimental design skills, we suggest these results 
may also be applicable to the teaching of other skills of similar 
complexity.
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