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ABSTRACT
Undergraduate research and laboratory experiences provide a wide range of benefits to 
student learning in science and are integral to imbed authentic research experiences in 
biology labs. While the benefit of courses with research experience is widely accepted, 
it can be challenging to measure conceptual research skills in a quick and easily scalable 
manner. We developed a card-sorting task to differentiate between novice and expert con-
ceptualization of research principles. There were significant differences in the way faculty/
postdocs, graduate students, and undergraduate students organized their information, 
with faculty/postdocs more likely to use deep feature sorting patterns related to research 
approach. When provided scaffolding of group names reflecting expert-like organization, 
participant groups were better able to sort by that organization, but undergraduate stu-
dents did not reach expert levels. Undergraduates with Advanced Placement experience 
were more likely to display expert-like thinking than undergraduates without Advanced 
Placement Biology experience and non-PEER (persons excluded because of their Ethnicity 
or Race) students displayed more expert-like thinking than PEER students. We found evi-
dence of undergraduates in various stages of development toward expert-like thinking in 
written responses. This card-sorting task can provide a framework for analyzing student’s 
conceptualizations of research and identify areas to provide added scaffolding to help shift 
from novice-like to expert-like thinking.

INTRODUCTION
Increasing use of Course-Based Undergraduate Research Experiences (CUREs) in col-
lege curriculums is allowing more students to gain firsthand experience with research 
(Bangera and Brownell, 2014; Corwin Auchincloss et al., 2014; Shortlidge et al., 
2016). Past work has shown that providing students with this early experience can 
yield many benefits such as fueling a desire to obtain advanced degrees or enter 
careers in Science, Technology, Engineering, and Mathematics (STEM; Russell et al., 
2007; Harrison et al., 2011; Graham et al., 2013; Rodenbusch et al., 2016), boosting 
confidence in students’ scientific abilities and understanding, and increasing sense of 
belonging in science (Seymour et al., 2004; Kuh, 2008; Robnett et al., 2015; Hernan-
dez et al., 2020). Ultimately, the goal of CUREs and research-like experiences is to 
improve students’ research skills and expert-like scientific thinking.

Expertise can be described by a number of characteristics that separate expert and 
novice thinking. One obvious difference is in depth of knowledge where novices tend 
to rely more on memorization whereas experts have a vast network of interconnected 
knowledge, allowing them to apply their understanding to complex scientific prob-
lems (Chi et al., 1981). Experts are also better able to integrate new information into 
their existing knowledge, whereas novices can struggle with cognitive overload when 
acquiring new information (Sweller, 1988; Dreyfus and Dreyfus, 2005). Experts also 
approach problem solving differently from novices where novices tend to use trial and 
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error strategies and struggle to make connections between con-
cepts while experts rely on mental modeling and hypothesis 
testing to develop new theories and solve complex problems 
(Chi et al., 1982). Two additional critical differences between 
experts and novices across domains are experts’ ability to recog-
nize meaningful patterns and to “see” problems at a deeper or 
more principled level than novices, who tend to view problems 
and patterns on more superficial similarities (Chi et al., 1988; 
Ericsson & Smith, 1991).

Experts’ ability to perceive deep principles connecting con-
cepts or problems leads to a difference in how experts and nov-
ices mentally organize and access information (Chi et al., 1981; 
Bedard and Chi, 1991; Smith, 1992; Krieter et al., 2016; 
Hoskinson et al., 2017; Galloway et al., 2018). In fact, template 
theory suggests that by scaffolding students with an expert-like 
organization structure to use when acquiring new knowledge, 
educators can better support development of expertise in stu-
dents (Hoskinson et al., 2017). Once in place, expert-like men-
tal models allow experts to more quickly recognize patterns, 
retrieve information, and respond appropriately while problem 
solving (Ericsson and Smith, 1991; Dreyfus, 2004).

The ability to measure expertise is of interest to both better 
understand experts’ mental models and to better support and 
assess interventions aimed at enhancing or building expertise. 
Common methods for assessing expertise include observations, 
interviews, accomplishments, reflections, and knowledge-based 
assessments. For example, assessing expertise in chess can be 
accomplished by rankings based on game wins and expertise in 
medicine may be measured by certification exams. Measuring 
expertise in students is often tied to specific courses via assign-
ments and exams or, for longer-term progressions, tied to port-
folios and concept inventories. Several assessment tools have 
been developed to measure research-related expertise in stu-
dents such as the Biological Experimental Design Concept 
Inventory, Experimental Design Ability Test, Test of Scientific 
Literacy Skills, Classroom Test of Scientific Reasoning, and Cal-
ifornia Critical Thinking Skills Test (Facione, 1991; Lederman 
et al., 2002; Sirum and Humburg, 2011; Gormally et al., 2012; 
Deane et al., 2014). As these assessments largely measure spe-
cific conceptual skills, there is a need for a tool that could mea-
sure the underlying shift in how students organize conceptual 
information as they progress towards expertise. Such a tool 
may provide insight into how experts versus novices in research 
organize information and may allow educators to better design 
and target interventions to assist novices. Additionally, an 
assessment tool aimed at organization of knowledge should be 
widely applicable to CUREs with different model organisms, 
fields of biology, and skills focus.

The difference between how experts and novices perceive 
and mentally organize information has previously been lever-
aged in classrooms to quantify expert versus novice-like think-
ing through use of card-sorting tasks. These tasks involve sort-
ing a set of cards with different concepts, problems, or scenarios 
into categories based on their relationships. Card-sorting tasks 
were first used in science to measure differences in how experts 
and novices sort physics problems (Chi et al., 1981). This study 
found that experts organize cards based on underlying physics 
principles used to solve the problems (e.g., conservation of 
energy), whereas novices focus more on surface similarities 
between cards (e.g., the type of object involved such as an 

inclined plane; Chi et al., 1981). This phenomenon of experts 
sorting based on deep principals and novices sorting based on 
surface features has been repeated in several studies and fields 
of science (Lin and Singh, 2010; Mason and Singh, 2011; Smith 
et al., 2013; Irby et al., 2016; Krieter et al., 2016).

Card-sorting tasks have also been applied to the field of biol-
ogy. Smith et al., (2013) asked nonmajors Introductory Biology 
students (novices) and biology faculty (experts) to sort biology 
problems based on underlying principles. They found that nov-
ices and experts used distinct conceptual frameworks to orga-
nize the cards; novices sorted based on a superficial framework 
of phylogenetic group whereas experts sorted based on deep 
conceptual principles such as evolution by natural selection. 
This same task was further able to distinguish lower and upper 
level undergraduate biology students, suggesting that students 
move towards more expert-like thinking as they progress in a 
biology major (Bissonnette et al., 2017). A genetics card-sort 
task was similarly used with genetics undergraduate students, 
genetics faculty, and genetics counselors but unexpectedly 
found that the two expert groups (faculty and counselors) used 
different frameworks to sort the cards with faculty organizing 
based on conceptual principles and counselors organizing 
based on problem-solving techniques (Smith, 1992).

Here, we examine whether a card-sorting task could be used 
to measure differences between novice-, developing-expert-, 
and expert-like thinking in the field of biology research. 
Research-based lab courses provide training and experience in 
research to undergraduate students but assessing student pro-
gression towards research expertise can be challenging. Many 
published CURE assessments focus on either students’ percep-
tions of their experiences and abilities, measuring specific skills 
or concepts, or are time intensive to score (Stiggins, 2004; 
Duckworth and Quinn, 2009; Creamer et al., 2010; Sirum and 
Humburg, 2011; Deane et al., 2014; Lopatto et al., 2014; 
Makarevitch et al., 2015; Hanauer et al., 2016; Zelaya et al.. 
2022). Card-sorting tasks have the potential to provide a gener-
alizable and scalable assessment tool that could be used across 
diverse laboratory course structures, research projects, and stu-
dent level to measure expert-like thinking in research. We addi-
tionally explore whether we observe differences between 
undergraduates based on Advanced Placement Biology experi-
ence, gender, or race.

METHODS
Card-Sorting Task Development
Cards were designed by identifying one deep-level (research 
approach) and two surface-level (organism studied, and person 
doing the research) features, then implementing scenarios 
around each feature. Deep-level research approach categories 
were anecdotal/story (i.e., flawed research approach or nonre-
search), correlational/observational, experimental/manipula-
tive, and secondary/meta-analysis. Surface-level organism cat-
egories were humans, fruit flies, plants, and microbes. 
Surface-level researcher categories were scientist, student, 
medical professional, and layperson. Each card was assigned to 
one category for the deep feature, organism-surface feature, 
and researcher-surface feature (Supplemental Material [card 
sorting cards and hypothesized sort]). For example, a card 
assigned to correlational/observational for the deep feature, 
human for the surface-level organism, and medical professional 
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for the surface-level researcher reads: “A doctor is interested in 
the effects of diet on health. They surveyed 2000 individuals in 
the United States and found that people who ate a fish-based 
diet had a 10% lower risk for heart disease.”

Cards were edited for clarity and length followed by trial 
runs carried out with populations of experts and novices. Trial 
run participants performed a sequential sorting of cards, first 
with only the guidance to sort based on “common underlying 
scientific principles” (unframed) and then with given category 
names based on the deep-feature sort (framed). In the expert-
level trial run, sorting data and feedback were obtained in a 
small focus group session of faculty. The expert-level trial run 
found initial trends consistent with our hypothesized deep-fea-
ture sort. Based on feedback, cards and task instructions were 
edited for clarity of wording. Subsequently, a novice card-sort 
trial was carried out using 42 first-semester Introductory Biol-
ogy students. Upon completion of this task, card-sorting instruc-
tions were further edited for clarity. Both of these trials were 
indicative of hypothesized results and this process of trial runs 
provided an initial face-validity test for our task. The finalized 
card-sorting task was shifted to an online platform (Qualtrics 
and Flippity) before final data collection. Final cards can be 
viewed in supplemental material [card sorting cards and 
hypothesized sort].

Participant Recruitment and Participant Population
Participants were recruited from two highly selective research 
universities in the southeast United States; Emory University, a 
private institution with roughly 7000 undergraduate students, 
and Georgia Institute of Technology, a state institution with 
roughly 17,000 undergraduates.

Undergraduate students were recruited from second-semes-
ter Introductory Biology labs at Emory and from first- and sec-
ond-semester Introductory Biology labs at Georgia Tech. For 
Emory students, the card-sorting task was assigned as an asyn-
chronous assignment worth less than 1% of their overall score 
for the course and an alternative assignment (of similar effort) 
was provided as an option for students who did not wish to 
participate in the study. At Georgia Tech, students were pro-
vided a 1% extra-credit opportunity for completing the task 
outside of class time, or an alternative assignment, for extra 
credit. The total undergraduate invited pool was 854 students.

Faculty, postdoc, and graduate students were recruited via 
email from the biology graduate student, postdoc, and faculty 
populations at both institutions. No incentive for participation 
was offered to this population and participation rates were low. 
In total, 658 undergraduate students, 10 graduate students, 
one postdoc, and 10 faculty responses were collected. Responses 
were excluded from further analyses when the sorting task was 
not completed or the subject did not complete the written 
responses, resulting in a total of 569 undergraduate students, 
10 graduate students, and 11 faculty/postdoc responses. Stud-
ies were done with approval by IRB (H19330 and 00002179).

The majority of undergraduate students (85%) were either 
first- or second-year students in college, 65% identified as 
female, and 27% were from a PEER group (Black/African 
American, Latinx/Chicano, Native American, Hawaiian/Pacific 
Islander, or mixed race with at least one of these groups). A 
majority (77%) of novice participants had no prior research 
experience. (Table 1)

Survey Instrument
Participants completed the card-sorting task online through a 
Qualtrics survey and use of an online card-visualization and 
organization tool (Flippity). Participants were initially directed 
to an informed consent form based on their home institution. 
Consenting participants then answered questions about their 
education level, field of study, prior course, and research expe-
rience (for undergraduates only), gender, race, and any past 
card-sorting activity experience before beginning the first sort-
ing activity.

The first (unframed) sort asked participants to sort the 16 
cards into groups based on “common underlying scientific prin-
ciples.” Participants were instructed to have no more than 15 
groups and to include each card in no more than one group. 
Participants viewed and visually sorted the cards on a linked 
Flippity page, then recorded their groupings along with a group 
name and reasoning for the name into the survey instrument. 
Participants were also asked to record the time they began and 
ended the sorting task.

Participants then performed a second (framed) sort where 
they were asked to sort cards into four prenamed groups consist-
ing of anecdotal/story, correlational/observational, experimen-
tal/manipulative, and secondary/meta-analysis. They recorded 
their groups, beginning and ending framed sort times, and 
answered a series of open-ended questions about their sorts.

Heatmap and Hierarchical Clustering
To help validate the final full sorting task, a matrix was created 
showing percentage pairings of each card for both undergradu-
ate students and faculty in the unframed sort (Krieter et al., 
2016). The undergraduate-student matrix values were then sub-
tracted from the faculty values to generate a heat map showing 
which pairs were more or less frequent in faculty versus under-
graduate-student sorts. The values from the faculty and under-
graduate-student matrices were then analyzed for hierarchical 
clustering using a Ward’s minimum variance method in JMP Pro.

Edit Distance and Percent Pairings Metrics
Edit distance measures the minimum number of card moves 
needed to transform a sort into a predicted sort and has previ-
ously been used as a measure to quantify similarity between 
sorts and predicted sorts (Deibel et al., 2005). Three predicted 
sorts were used: deep-feature sort according to the research 
approach, surface-feature sort according to the study organism, 
and surface-feature sort according to the researcher. The edit 
distance of a sort that exactly matches the comparison-pre-
dicted sort would be zero while a sort that nearly matches the 
comparison sort but that misplaces three cards into other 
groups would be three. Thus, smaller edit distances indicate 
sorts more closely, matching the comparison sort. A Python 
program was used to calculate the edit distances of each framed 
and unframed participant sort to each of the three predicted 
deep- or surface-feature sorts.

Percent pairing is another previously used measure that 
quantifies the percentage of sorts which place two cards into 
the same group (Smith et al., 2013). Thus, a high percent pair-
ing indicates that participants frequently placed those two 
cards in the same group. A Python program was used to calcu-
late the percent pairing for all possible card pairs for all partic-
ipant sorts.
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Comparison of Participant-Group Sort Edit Distances
Differences between edit distances for participant groups 
(undergraduates, graduate students, and faculty/postdocs) and 
sort conditions (unframed and framed) were carried out using 
Kruskal-Wallis H test with post hoc Dunn’s analyses.

Comparison of Demographic Information
While the faculty and graduate-student population was too 
small to follow up with demographic comparisons between 
sorting conditions, Kruskal-Wallis H tests with post hoc Dunn’s 
analyses were carried out to compare edit distances between 
different demographic conditions for undergraduate sorts.

Free Response Rubric
A rubric to analyze open-ended responses to the card-sorting 
task was developed by identifying common themes among the 
responses (Table 2). Researchers utilized a subset of 42 novice 
responses for rubric development and training. Three members 
of the research team documented common themes and then 
collectively met to share ideas and refine rubric categories. Two 
other members of the research team then applied the rubric to 
the same subset of data and provided feedback to further refine 
and finalize the rubric. While we initially began this process 
using a grounded theory approach, we realized that upon 
implementation of our original coding rubric that our themes fit 
more accurately into a modified version that highlighted areas 
related to our hypothesized groupings of experts and novices 
with a middle category to inform responses that were more 
advanced than novice responses but did not fully demonstrate 
expert-like thinking (Strauss and Corbin, 1990). For examples 
of written responses and their coding scheme, please see the 
Supplemental Files [card sorting cards and hypothesized sort].

Using the rubric, two researchers coded participant’s written 
responses and interrater reliability was calculated to get a base-
line for agreement. Cohen’s Kappa was calculated for the cate-
gory and subcategory level for each part of the rubric with the 
following values indicating moderate to substantial agreement 
among the researchers. For the “Grouping Explanation Data”, 
the κ value was 0.75 at the category level and 0.51 at the sub-
category level. For the “Sorting Challenges”, the κ value was 
0.67. For the “Preferences”, the κ value was 0.58. The two 
researchers involved in the coding then discussed the response 
and coded to consensus. Responses were then grouped by 
whether they displayed novice-like thinking, developing think-
ing, expert-like thinking, or more than one category. Another 
author who was not involved in the rubric coding process inde-
pendently coded a subsample (20) of responses to check for 
interrater reliability with the consensus code. Cohen’s Kappa 
values were calculated showing substantial to near-perfect 
agreement among the researchers. For the “Grouping Explana-
tion Data”, the κ value was 0.82 at the category level and 0.72 
at the subcategory level. For the “Sorting Challenges”, the κ 
value was 0.87. For the “Preferences”, the κ value was 0.76.

Comparing Edit Distance versus Free Response Selection
To test for internal validity of the task we compared the 
deep-feature edit distance to what level of thinking the 
responses demonstrated, as coded by the rubric. Differences in 
edit distance between categories of responses was analyzed by 
ANOVA.

RESULTS
Here, we sought to explore whether a card-sorting task could be 
used to differentiate between expert and novice thinking in sci-
entific research. We developed 16 scenario cards designed with 
a deep feature (either anecdotal/story, correlational/observa-
tional, experimental/manipulative, or secondary/meta-analy-
sis), surface-feature organism (either human, fly, plant, or 
microbe), and surface-feature researcher (either scientist, med-
ical professional, student, or layperson). Participants completed 
both unframed (sorting 16 cards into anywhere from 2–15 
groups based on “underlying scientific research principles”) and 
framed (sorting cards into groups labeled with deep feature cat-
egories) sorts.

Expert Sorts Recreate Predicted Deep Feature Sort
To examine how novices and experts sort the scenarios in an 
unbiased manner we first examined the unframed sort for how 
often each potential card pair was sorted into the same group 
by participants (percent pairing metric) and percent pairing 
between each card were organized into a matrix for analysis. 
These percent pairing matrices for faculty/postdocs and under-
graduates were analyzed by hierarchical clustering to provide a 
blind analysis to the hypothesized sorts. In this modeling, for 
the faculty sort, the clustering recapitulates the hypothesized 

TABLE 2 . Rubric for written prompt analysis

Rubric

Category Subcategory

Reasoning
Novice-type 

thinking
Subject of card as group name
Field of research
Who conducted research
Multiple surface features mentioned

Developing 
thinking

Data collection/similar data
Similar type of conclusion
Correlation/causation
Control group

Expert-type 
thinking

Given group names similar to own group names
Experimental design
Lack of evidence
Past study/meta-analysis

Challenges
Reasoning for 

challenges
Did not understand anecdotal
Card potentially in multiple groups
Card doesn't belong in any group
Did not understand meta-analysis
Did not understand group names of framed sort

Sorting Preference
Preferred framed 

sort
Given names clearer
Coherence of groups
Specificity of group names

Preferred 
unframed sort

Ease of understanding
Trouble placing cards into framed sort
Created groups were broader

No preference Created names and given names similar
Both sets were easy to sort
Both sets were difficult to sort
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expert-like deep sort perfectly with correlational/observational, 
experimental/manipulative, secondary/meta-analysis, and 
anecdotal/story all represented as distinct clusters on the tree 
(Figure 1a). The undergraduate student sort largely recapitu-
lated the predicted surface feature by organism sort, identifying 
a cluster for each organism type (Figure 1b). However, it did 
not perfectly recapitulate each category group (as not all cards 
cluster into their organism group) and the distances to groups 
are much longer than the faculty sort distances, indicating less 
uniformity. Additionally, the undergraduate clustering identi-
fied one deep-feature category (secondary/meta-analysis) as a 

cluster, although with less certainty (longer branch length) 
than in the faculty clustering.

To examine differences between the faculty/postdoc expert 
and undergraduate novice percent pairing data we created a 
heat map matrix of pairing differentials by subtracting the 
undergraduate matrix from the faculty/postdoc matrix (Figure 
1c). For a majority of deep-feature pairings (23/24), experts 
sorted these cards more consistently together than novices. 
Conversely, for the majority of surface-feature organism 
pairings (23/24) novices sorted these cards more consistently 
together than experts.

FIGURE 1. Hierarchical clustering analysis and percent pairing heatmap. Data on how many times cards in the unframed sort were paired 
together were used to create heat matrices of card pairings for faculty/postdoc and undergraduate students. Hierarchical clustering 
analysis using Ward’s minimum variance method generated card groupings for (a) faculty/postdoc and (b) undergraduate students. 
Faculty/postdoc card groupings clustered according to predicted deep features, while undergraduate students clustered more weakly 
around predicted surface feature subject categories along with meta-analysis/secondary. Longer branch length indicates less tightly 
clustered cards. (c) Heatmap showing difference in percent pairing between faculty/postdoc and undergraduate students. The card pair for 
each cell in the matrix is identified by the matrix column and row card letters. The deeper blue the square the more faculty/postdocs made 
the pairing compared with deeper red where more undergraduates made the pairing. Letters indicate predicted deep feature pairings.
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Experts More than Novices Use Research Approach to 
Organize Cards in an Unframed Sort
In the unframed sort, participants were asked to sort based on 
“underlying scientific principles” but were not given further 
guidance as to what principles to use. We hypothesized that 
experts would sort more often than novices by the deep feature 
of research approach while novices would sort more often than 
experts by surface features such as who carried out the research 
or the subject organism used. To test this, we calculated the edit 
distances (minimum number of cards that would have to be 
moved in order to convert a sort to a predicted sort) for each 
participant sort relative to the three predicted sorts. Thus, edit 
distances closer to zero indicate sorts that closely match the 
comparison predicted sort while larger edit distances indicate 
more dissimilar sorts. Our results showed that faculty/postdocs 
were more likely than undergraduate students to sort based on 
the deep-feature of research approach (Figure 2a, Kruskal-Wal-
lis H test for the three groups p < 0.001 with Post hoc Dunn’s 
test p < 0.0001 comparing undergraduate and faculty/postdoc 
groups). Our results also show a progression from novice to 
expert, with undergraduate sorts being most dissimilar to the 
predicted deep-feature sort, followed by graduate students and 
then faculty/postdocs with sorts most similar to the predicted 
deep-feature sort (Figure 2a, average edit distances of 7.7, 6.2, 
and 2.8, respectively). In fact, faculty/postdoc sorts, on aver-
age, would require only three card moves to perfectly match the 
predicted deep-feature sort.

We also found that novices were more likely than experts to 
sort based on the organism featured in the scenarios as under-
graduate students’ edit distances to the predicted surface-fea-
ture sort based on scenario organism were significantly lower 
than faculty/postdocs’ (Figure 2b, average edit distances of 7.7 
and 9.9, respectively, Kruskal-Wallis H test for the three groups 

p < 0.01 with Post hoc Dunn’s test p < 0.01 comparing under-
graduate and faculty/postdoc groups). We did not find a differ-
ence between novices and experts in sorting scenarios based on 
the person featured in the scenario (Figure 2c, Kruskal-Wallis H 
test for the three groups p > 0.05).

Both Novice and Expert Sorts Became More Similar to 
the Predicted Deep-Feature Sort when Scaffolded with 
Deep-Feature Category Names
When provided with an expert-like conceptual framework by 
providing group names of anecdotal/story, correlational/obser-
vational, experimental/manipulative, and secondary/
meta-analysis to use in the framed sorting task, we found that 
on average all sorts better matched the predicted deep-feature 
sort (Figure 3a). Average edit distances dropped from 7.7 to 5.2 
for undergraduates, 6.2 to 3.2 for graduate students, and 2.8 to 
1.9 for faculty/postdocs though the decrease was only statisti-
cally significant for undergraduate students (Kruskal-Wallis H 
test for the six groups p < 0.001 with Post hoc Dunn’s test p < 
0.0001 comparing undergraduate unframed and framed sorts). 
Conversely, we found that undergraduate student sorts became 
less similar to the predicted surface-feature sort based on 
organism in the framed sorting task (Figure 3b, average edit 
distance increased from 7.7 to 8.9, Kruskal-Wallis H test for the 
six groups p < 0.001 with Post hoc Dunn’s test p < 0.0001 com-
paring undergraduate unframed and framed sorts). We also 
found a small but significant decrease in edit distance to the 
predicted surface sort based on person featured for undergrad-
uate students (Figure 3c, Kruskal-Wallis H test for the six groups 
p < 0.001 with Post hoc Dunn’s test p < 0.0001 comparing 
undergraduate unframed and framed sorts).

Although undergraduate-student sorts became more similar 
to the predicted deep-feature sort in the framed sorting task, 

FIGURE 2. Unframed edit distances to predicted sorts for undergraduate students, graduate students, and faculty/postdocs. Box and 
whisker plot showing edit distances of unframed sorts to the predicted (a) deep-feature sort, (b) surface-feature organism sort, and (c) 
surface-feature researcher sort. Lower numbers indicate sorts more closely matching the predicted sort. Sample sizes were 569 (under-
graduate students), 10 (graduate students), and 11 (faculty/postdocs). Boxes frame the middle two quartiles with an “X” for the average 
score and horizontal line for the median score. Whiskers indicate nonoutlier minimum and maximum scores.
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they still did not sort as closely to the predicted deep-feature 
sort as faculty/postdocs (Figure 3a, Post hoc Dunn’s test p < 
0.001 comparing framed undergraduate and faculty/postdoc 
sorts).

Secondary/meta-analyses Cards Most Often Grouped 
Together by Novices
To examine whether certain deep-feature categories were more 
or less challenging for undergraduate students to sort as pre-
dicted, we examined the percent card pairings for these catego-
ries. We found that in the unframed sort, undergraduate stu-
dents more commonly grouped secondary/meta-analysis cards 
together than for card pairs in other deep-feature groups 
(Figure 4a). We also found that undergraduate students least 
often grouped correlational/observational cards together com-
pared with the other deep-feature groups. Undergraduate stu-
dents grouped correlational/observational cards together about 
as often as they grouped cards with surface-feature groups 
together. We did not find large differences in the grouping of 
the surface-feature pairings, indicating that when organizing by 
surface feature, novices were not challenged by one subcate-
gory more than others.

When given guidance on how to sort cards (i.e., given group 
names), undergraduate students more often grouped cards 
within the deep-feature groups together (Figure 4b). Interest-
ingly, while the average percent pairings within the deep-fea-
ture groups all increased from the unframed to the framed sort 
for undergraduate students, they showed the biggest percent 
pairings increase for experimental/manipulative and second-
ary/meta-analysis while anecdotal/story showed a relatively 
small gain of around only 5%.

Undergraduates with Advanced Placement Biology 
Experience and Non-PEER Undergraduates Sorted More 
Closely to Predicted Deep-feature Sort
To examine whether past experience with Advanced Placement 
(AP) Biology might impact card sort measures we grouped stu-
dents according to self-reported experience with AP Biology 
classes (experience with AP Biology and a score of at least a 
four on the AP Biology exam, experience with AP Biology but 
did not receive at least a four on the AP Biology exam, and no 
AP Biology experience). We found that AP Biology experience 
did impact students’ sort similarity to the predicted deep-fea-
ture sort with students that received at least a four on the AP 
Biology exam having the lowest edit distances to the predicted 
deep-feature sort for both the unframed and framed sorts (Kru-
skal-Wallis H test for the six groups p < 0.001). The AP Biology 
students with at least a four on the exam had unframed sorts 
significantly more similar to the predicted deep-feature sort 
compared with students without AP Biology experience and 
framed sorts significantly more similar to the predicted 
deep-feature sort compared with students with AP Biology but 
without at least a four on the exam (Post hoc Dunn’s test p < 
0.01 and p < 0.001 respectively). All groups showed framed 
sorts significantly more similar to the predicted deep-feature 
sort than the unframed sort (Post hoc Dunn’s test p < 0.0001 for 
all three comparisons).

We found that both non-PEER and PEER student sorts 
became more similar to the predicted deep feature sort in the 
framed condition to a similar extent (average decrease in edit 
distance was 2.6 and 2.5 respectively) but found that PEERs 
had significantly higher overall edit distance in the framed con-
dition than non-PEERs (Kruskal-Wallis H test with the four 

FIGURE 3. Unframed and framed edit distances to predicted sorts for undergraduate students, graduate students, and faculty/postdocs. 
Box and whisker plot showing edit distances of unframed and framed sorts to the predicted (a) deep-feature sort, (b) surface-feature 
organism sort, and (c) surface-feature researcher sort. Lower numbers indicate sorts more closely matching the predicted sort. Sample 
sizes were 569 (undergraduate students), 10 (graduate students), and 11 (faculty/postdocs). Boxes frame the middle two quartiles with an 
“X” for the average score and horizontal line for the median score. Whiskers indicate nonoutlier minimum and maximum scores.
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thinking) with four subcategories each 
(Table 2). Novice-like thinking was used 
by 40% of undergraduate students with 
32% mentioning using the “subject of the 
card as the group name” (Figure 6a). The 
majority of undergraduate students 
expressed developing thinking with 51% 
having responses fall into this category. Of 
those, the overwhelming majority dis-
cussed “data collection/type of data” in 
their response with 42% of all undergrad-
uate students using this framing (Figure 
6a). Expert-like thinking was expressed 
by 32% of undergraduate students with 
“past study/meta-analysis” leading the 
way at 22%. Of the undergraduate-stu-
dent responses, 10% expressed both nov-
ice-like and developing thinking, 30% 
expressed expert-like and developing 
thinking, 5% expressed both novice- and 
expert-like thinking.

In contrast, faculty/postdocs used 
expert-like reasoning in their written 
responses more than the other two catego-
ries with 100% of faculty/postdocs dis-
playing expert-like thinking. “Given group 
names similar to own group names” 
(90%), “past study/meta-analysis” (90%), 
and “experimental design” (82%) were 
represented in the vast majority of faculty 
(Figure 6c). Developing thinking was rep-
resented 36% of the time with “similar 
type of conclusion” and “data collection 
method” mentioned 27% and 18% of the 
time, respectively (Figure 6c). Each time 
an expert participant used developing 
thinking they also displayed expert-like 
thinking. Novice-like thinking was never 
displayed by the faculty/postdoc group. 
The majority of faculty/postdocs (7/11, 
64%) displayed only expert-like thinking 
while some displayed both expert and 
developing thinking (4/11, 36%). Gradu-
ate students were mixed with 60% dis-

playing expert-like thinking, 40% displaying developing think-
ing, and 30% displaying novice-like thinking (one participant 
had an uncodeable response). Of the expert-like reasoning dis-
played by graduate students, “given group names”, “experi-
mental design”, and “past-study/meta-analysis” were all pres-
ent in all the graduate students who displayed this type of 
thinking (60%; Figure 6b). All the developing responses were 
of the “data collection/similar data” subcategory and the novice 
responses were “field of research” and “subject of card as group 
name” (20%).

Card Potentially Being in Multiple Groups was the Most 
Consistent Challenge
We also asked participants what challenges they had sorting 
cards during the second framed sort and analyzed this data for 
undergraduate students. Five types of reasoning were present 

groups p < 0.001 with Post hoc Dunn’s test p < 0.01 comparing 
framed non-PEER and PEER groups). We also found that both 
female- and male-student sorts became more similar to the pre-
dicted deep-feature sort in the framed condition to a similar 
extent (Figure 5c, average decrease in edit distance was 2.5 and 
2.7, respectively) and found no significant difference in overall 
edit distances between females and males for both the unframed 
and framed sorts (Post hoc Dunn’s test p > 0.05 for both 
comparisons).

Novices Used a Mix of Novice Like, Developing, and 
Expert-Like Thinking While Experts Rarely Used 
Novice-Like Thinking
We used a rubric to code written responses into three categories 
(expert-like thinking, novice-like thinking, and developing 
thinking, a transitional category between expert and novice 

FIGURE 4. Percent predicted sort category card pairings for unframed and framed 
undergraduate student sorts. The average percent of sorts that grouped two cards 
together for each possible card pairing within predicted deep and surface feature 
categories are shown. Results presented for undergraduate student unframed (a) and 
novice framed (b) sorts. Categories colored according to their predicted sort; deep feature 
(dark green), surface-feature organism (medium green), and surface-feature researcher 
(light green).
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consistently across our undergraduate-student responses. 30% 
of undergraduate students indicated that a card potentially 
being in multiple groups was a challenge. 12% of undergradu-
ate students indicated a lack of understanding of the anecdotal/
story category and 7% indicated a lack of understanding of the 
meta-analysis category. Finally, 6% discussed a card not belong-
ing in any group, and 3% did not understand group names of 
the framed sort (figure 6d).

Undergraduate Students Preferred the Framed Sort to the 
Unframed Sort
Undergraduate student participants overall preferred the 
framed sort over the unframed sort with 51% of participants 
preferring the framed sort and only 16% preferring the 
unframed sort (Figure 5d). Three reasons for preferring the 
framed sort were coded in rubric analysis with “given names 
clearer” (29%) being the most common, followed by “coher-
ence of groups” (13%), and specificity of group names (10%; 
Figure 6e). For the 16% of novice participants who preferred 
the unframed sort, the top reasoning given was “ease of under-
standing” (11%). 14% of participants had no preference with 
the top reason cited as “both were easy to sort” (9%).

Rubric Coding Correlated with Edit Distance
When we examined how rubric coding related to edit distance 
for all participants to the predicted deep feature sort we found 
that individuals whose rubric coding was “novice only” had the 

highest average edit distance (9.14, n = 184), followed by in 
order: “novice/developing” (7.66, n = 38), “developing only” 
(6.14, n = 91), “developing/expert” (4.90, n = 172), and 
“expert” (3.76, n = 25; Figure 7). The difference in edit distance 
between these different groupings was significant (Krus-
kal-Wallis H test for the five groups p < 0.001) and all pairwise 
comparisons between nonadjacent groups were significant 
(Post hoc Dunn’s test p < 0.01 in all cases). Individuals who 
displayed all three types of thinking in their code (n = 24) had 
an edit distance 6.16 showing high similarity to the average for 
those coding as developing only while individuals who coded as 
both novice and expert were rare (n = 8) and had an edit dis-
tance of 5.13, between “developing” and “developing/expert.”

DISCUSSION
With the increasing use of course-based research experiences in 
colleges and universities, it is important to examine how these 
experiences impact students’ development of scientific research 
skills. Ideally, research experiences would help move students 
from novice-like to more expert-like thinking in how they con-
ceptualize research. Card-sorting tasks where participants are 
asked to group cards with similar problems or scenarios 
together have been used previously to measure differences in 
how experts and novices organize materials. Novices tend to 
organize cards based on surface-level similarities while experts 
tend to organize cards based more on underlying conceptual 
similarities. However, card sort tasks have not previously been 

FIGURE 5. Unframed and framed edit distances to predicted deep-feature sort for different undergraduate groups. Box and whisker plot 
showing edit distances of unframed and framed sorts to the predicted deep-feature sort for (a) undergraduate students with no high-
school AP Biology experience (n = 211), students with high-school AP Biology experience but without a high exam score (n = 105), and 
students with high-school AP Biology experience and a high exam score (n = 249), (b) non-PEER (n = 423) and PEER (n = 139) students, and 
(c) female (n = 370) and male (n = 189) students. Lower numbers indicate sorts more closely matching the predicted deep-feature sort. 
Boxes frame the middle two quartiles with an “X” for the average score and horizontal line for the median score. Whiskers indicate 
nonoutlier minimum and maximum scores.
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FIGURE 6. Rubric analysis of written prompt responses. Undergraduate student (a), graduate student (b), and faculty/postdoc (c) sorting 
reasonings organized by expert-like thinking (blue), developing thinking (yellow), novice-like thinking (green). For (a), (b), and (c) percent-
ages sum to gt 100 as subjects could be categorized as using multiple methods of reasoning. Reasons given by novices for sorting 
challenges (d). Undergraduate student card-sort preferences (e) and reasons for card-sort preferences (f) with no preference (yellow), 
preferred unframed sort (green), and preferred framed sort (blue). For (c), (d), and (e) percentages total to lt 100 as not all subjects 
responded to prompts.
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used to measure expertise in research. Here, we developed and 
validated a card-sorting task aimed at measuring novice versus 
expert thinking in scientific research.

Our results show that we can detect a measurable difference 
between experts and novices when they are simply asked to 
group similar scenario cards together. Using independent hier-
archical clustering analysis we were able to demonstrate that 
our sorting task was designed in a manner that was consistent 
with our hypothesized surface and deep-feature sorts. Our 
results supported our hypothesis that experts would be more 
likely to group cards according to fundamental differences in 
the research approach described on cards than novices. This 
suggests that experienced researchers may find how research is 
performed to be of high importance as they know that the mode 
of research impacts the types of questions which can be 
addressed and the conclusions that can be drawn (e.g., manip-
ulative experiments can address questions of causation while 

observational studies can only address questions of correlation). 
Research experts were also less likely than novices to group 
cards according to the organism used in a study. Experts are 
likely more familiar with connecting findings from numerous 
studies using different model organisms to build understanding 
of biological processes. Both experts and novices grouped cards 
least often according to the person carrying out the research, 
perhaps recognizing that this does not impact the conclusions 
that can be drawn from a study, or due to instructions provided 
for the initial sort about looking for the “underlying scientific 
principles” priming them away from this framing option.

When participants were provided expert-like scaffolding via 
group names based on research approach and then asked to 
sort cards into those groups (framed sort), both novices and 
experts were better able to sort into those categories. On aver-
age, novices who were given category titles were able to sort 
cards into those categories about as well as or better than grad-
uate students who were not given category names. This sug-
gests that novices are largely able to recognize different research 
approaches when instructed to focus on that but that they were 
less likely than experts to view the research approach as the 
most important distinction between studies in their initial 
unframed groupings. Thus, the shift from novice to expert-level 
thinking in biological research may, in part, involve placing 
more emphasis on experimental design over other details such 
as model organism used.

Looking at which cards novices grouped together more or 
less frequently (percent pairings) for our novices gives us some 
additional insight into areas where they may have struggled 
with the task. Of the deep-feature sorting groups, students 
seemed to have the easiest time identifying meta-analysis type 
studies. This could be because the meta-analysis studies were 
more obvious in their approach, or perhaps the way in which 
these novices have been exposed to science previously primed 
them to be able to identify these types of studies. Interestingly, 
anecdotal/story and observational/correlational have a much 
smaller increase between unframed and framed in percent pair-
ings compared with experimental/manipulative and second-
ary/meta-analysis. This may indicate that students are having 
trouble identifying these two categories, so directed instruction 
on these research approaches may be a fruitful area to explore 
for developing research expertise in undergraduates.

When we compared undergraduates with varying levels of 
past biology curriculum experience as measured by exposure to 
high school AP Biology courses and performance on the AP 
Biology exam, we found that undergraduates with more high-
school-level biology have more expert-like thinking on our 
card-sort task. This may indicate that people who have taken 
and excelled in AP Biology courses have developed more expert-
like research thinking. These results are consistent with find-
ings from other studies about performance on the AP exam and 
college performance, but it would be interesting to identify 
exactly what type of thinking is being promoted by these exams 
or if it is a selection bias issue (Sadler and Tai, 2007; Ackerman 
et al., 2013; Beard et al., 2019).

In comparing PEER and non-PEER students, we found that 
non-PEER students exhibited more expert-like thinking on our 
sort task than PEER students. This is consistent with literature 
related to preparedness for college and suggests that interven-
tions in this area could be beneficial to students from PEER 

FIGURE 7. Deep-feature edit distance based on rubric coding. 
Rubric coded responses were grouped together based on what 
type of sorting reasoning they displayed and then average 
deep-feature edit distances for each group was compared. Shown 
is a box and whisker plot comparing respondents who utilized 
novice thinking only (n = 184), novice and developing thinking (n = 
38), developing thinking only (n = 91), developing and expert 
thinking (n = 172), and expert thinking only (n = 25). Lower edit 
distance indicates sort more closely matching the predicted 
deep-feature sort. Boxes frame the middle two quartiles with an 
“X” for the average score and horizontal line for the median score. 
Whiskers indicate nonoutlier minimum and maximum scores.
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groups when preparing for lab courses (Stephens et al., 2014; 
Estrada et al., 2016; Broda et al., 2018). Our card-sort task did 
not measure a difference between female and male students.

When we examined participants’ written responses on their 
thought process behind their unframed sorts we found evidence 
of novice-like, expert-like, and developing thinking. Subjects 
who expressed novice-like thinking were just focused on the 
surface features of the cards and not connecting to the deeper 
research and experimental-design components. Conversely, 
subjects expressing expert-like thinking were recognizing the 
deeper research connections between the different cards exper-
imentally. Those in the middle who expressed developing 
thinking understood that there was some deeper meaning to 
the cards but may have been unable to explicitly connect with 
those deeper principles. While students in the developing think-
ing demonstrated understanding of some features of experi-
mental design, these features are more about the experimental 
set up and structure rather than a deeper aspects of research 
related to the underlying principles of the experiment and how 
that informs our understanding of the data and conclusions. 
Subjects in this category may have also expressed expert or 
novice-like thinking with their developing thinking. While the 
expert responses were useful for comparison purposes, a deeper 
examination of the novice responses and characterizations by 
the rubric can be useful for the way in which we can approach 
our students’ perceptions and understanding of research and 
experiments.

We found novices’ reasoning to range across novice-like, 
developing, and expert-like, with 40% of novices expressing 
novice-like thinking, 51% expressing developing thinking, and 
34% expressing expert-like thinking. These reasoning group-
ings correlated to the deep feature sort with individuals dis-
playing novice-only thinking being the farthest from the 
deep-feature sort, followed by individuals with a mix of novice 
and developing thinking, then developing-only, developing/
expert, and expert-only thinking. Novices that express nov-
ice-like thinking may initially have greater struggles in under-
standing the how and why of their experiments when taking 
inquiry-based and CURE lab classes. Students at this level may 
benefit from shifting their thinking to the developing level 
rather than try to have them understand at an expert-like 
level. Getting these students to think about what type of data 
they are collecting and how they are collecting it could help 
them to move their conceptual thinking to the next level. In 
addition, having a holistic approach to the data and experi-
ment could help students avoid overfocusing on the surface 
level details.

Once students are in the developing category of thinking, 
they are clearly thinking about experimental design on another 
level and have mostly moved past the basic surface-level struc-
ture. However, students in this category may end up too focused 
on the details of the data and what was done in the experiment 
as opposed to the larger implications behind the conclusions. 
There is evidence that students can observe patterns in data, 
but it is more difficult to get them to understand conclusions 
based on that analysis (Germann and Aram, 1996; Cary et al., 
2019). This can be especially apparent when students are 
tasked with designing their own experiments in CUREs. In a 
well-designed experiment, scientists should think ahead to 
what their potential results may look like and how they will 

analyze those results, based on how they have set up their 
experiment. Students that are at this level of thinking may be 
structuring their ideas into the basics of how to collect the data 
rather than what the data will look like and how that will influ-
ence the conclusions they can draw. This shows up in aspects of 
experimental design and research related to thinking about all 
the different variables that can influence an experiment and 
how best to control for them. By carefully designing activities in 
CUREs and other labs, we can potentially shift this group’s 
thinking into more expert-like concepts focused on the type of 
experiment performed and why that is important.

Students in the expert-like thinking category need opportu-
nities to hone their thinking and utilize it in a practical manner. 
Students who are already showing expert-like thinking are in 
position to gain next-level scientific processing skills and can 
greatly benefit from the opportunities that CUREs and inqui-
ry-based labs provide. They may also be a valuable resource for 
helping other students to understand the concepts and conclu-
sions of the work in group settings as they may have a good 
understanding of where other students are struggling. In all 
cases, students preferred the frame sort over the unframed sort, 
indicating that students at all levels can benefit from discussing 
the importance of research approach openly.

One potential limitation for this study is that roughly 20% 
of the student population had some kind of difficulty with 
their understanding of the different category titles in the 
framed sort. This may indicate that some of the sorting diffi-
culty could be due to unfamiliarity with the category titles, 
although an argument could be made that if a student does 
not understand a category title, they may not have a good 
understanding of the underlying principle. Another potential 
difficulty could be the use of the word “observes” on two cards 
not in the “correlational/observational” category that could 
lead to miscuing for students. Even with these difficulties, 
51% of students preferred the framed sort. The large shift in 
edit distance toward a more deep-feature understanding in 
the framed sort compared with the framed sort indicates that 
some scaffolding to student thinking is useful at this point in 
their education process.

Another potential limitation of this study is that our 
“unframed” sort still prompted students to sort based on “com-
mon underlying scientific principles” so may have primed them 
to focus more on the deep feature. It is possible that without 
this guidance we would find larger differentials between nov-
ices and experts or, possibly, find some experts sorting based on 
surface features.

Ultimately, our study has shown that there is an appreciable 
difference in the ways novices and experts organize their infor-
mation around research. Our results suggest some ways in 
which laboratory science education can improve outcomes for 
students as we try and develop a more expert-like way of think-
ing about science and research. While we have demonstrated 
the viability of using a card-sort system for exploring differ-
ences in thinking related to research, it is unclear whether the 
test could be used for more diagnostic purposes to see how 
much progress students have made while taking biology lab 
courses. Ideally, we would be able to use this system to test 
individual-student progress over the course of a term or year to 
see how students have grown and adjust course curricula as 
needed.
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