Sample $1 \square$ Normal strain; labeled with green fluor
Sample $2 \square$ Deletion strain; labeled with red fluor

Microarray analysis of strain deleted for gene E
Gene A - yellow
Gene B - green
Gene C - green
Gene D - yellow
Gene E - green
Gene F - red
Gene G - yellow
Gene H - yellow
Gene I - yellow
Gene J - green
Gene K - yellow
Gene L-yellow
Gene M - yellow
Gene N - yellow
Gene O-yellow
Gene P - green
Gene Q - yellow
Gene R - green
Gene S - red
Gene T-yellow
Gene U - yellow
Gene V - yellow
Gene W - yellow
Gene X - yellow
Gene Y - red
Gene Z - red
Microarray analysis of strain deleted for gene T
Gene A - yellow
Gene B - green
Gene C - green
Gene D - yellow
Gene E-yellow
Gene F - red
Gene G - yellow
Gene H-yellow
Gene I - yellow

Gene J - green
Gene K - yellow
Gene L-yellow
Gene M - yellow
Gene N - yellow
Gene O - yellow
Gene P - green
Gene Q - yellow
Gene R - green
Gene S - red
Gene T- green
Gene U - yellow
Gene V - yellow
Gene W - yellow
Gene X - yellow
Gene Y - red
Gene Z - red
Microarray analysis of strain deleted for gene I
Gene A - yellow
Gene B - yellow
Gene C - yellow
Gene D - yellow
Gene E - yellow
Gene F - yellow
Gene G - yellow
Gene H-yellow
Gene I - green
Gene J - yellow
Gene K - yellow
Gene L - red
Gene M - yellow
Gene N - yellow
Gene O - yellow
Gene P - yellow
Gene Q - yellow
Gene R - yellow
Gene S - yellow
Gene T - yellow
Gene U-yellow
Gene V - yellow
Gene W - yellow
Gene X - yellow
Gene Y - yellow
Gene Z - yellow

Microarray analysis of strain deleted for gene Y
Gene A - yellow
Gene B - yellow
Gene C - yellow
Gene D - yellow
Gene E-yellow
Gene F - green
Gene G - yellow
Gene H-yellow
Gene I - yellow
Gene J - yellow
Gene K - yellow
Gene L - yellow
Gene M - yellow
Gene N - yellow
Gene O-yellow
Gene P - yellow
Gene Q - yellow
Gene R - yellow
Gene S - green
Gene T-yellow
Gene U - yellow
Gene V - yellow
Gene W - yellow
Gene X - yellow
Gene Y - green
Gene Z - green
Microarray analysis of strain deleted for gene R
Gene A - yellow
Gene B - yellow
Gene C - yellow
Gene D - yellow
Gene E - yellow
Gene F - red
Gene G - yellow
Gene H-yellow
Gene I - yellow
Gene J - yellow
Gene K - yellow
Gene L - yellow
Gene M - yellow
Gene N - yellow

Gene O - yellow
Gene P - yellow
Gene Q - yellow
Gene R - green
Gene S - red
Gene T-yellow
Gene U - yellow
Gene V - yellow
Gene W - yellow
Gene X - yellow
Gene Y - red
Gene Z - red
Microarray analysis of strain deleted for gene B
Gene A - yellow
Gene B - green
Gene C - green
Gene D - yellow
Gene E-yellow
Gene F - red
Gene G - yellow
Gene H-yellow
Gene I - yellow
Gene J - green
Gene K - yellow
Gene L - yellow
Gene M - yellow
Gene N - yellow
Gene O-yellow
Gene P - green
Gene Q - yellow
Gene R - green
Gene S - red
Gene T-yellow
Gene U - yellow
Gene V - yellow
Gene W - yellow
Gene X - yellow
Gene Y - red
Gene Z - red

Microarray cluster analysis:
R, J, C, P - cluster 1

Z, F, S - cluster 2

Considering the microarray data listed above (deletion strain analysis and cluster analysis), do your best to propose a model (diagram) of the pathway we're studying.

Mass spectrometry analysis:
T, B, and F are phosphorylated
I is ubiquitinylated

Considering the two-hybrid data and the mass spec analysis above, do your best to propose a model (diagram) of the pathway we're studying:

Homology-Searching:
By searching each of the 26 genes against databases of known proteins, you find significant matches for the following genes:

Gene B
Gene C
Gene D
Gene F
Gene H
Gene Q
Based on the alignments, draw conclusions regarding the functions of these genes. Also, consider whether these alignments may help suggest potential genetic, protein, and regulatory interactions.

