Appendix One. The hierarchical level of each concept, its coverage in the pre-workshop version of the course (1=covered; 0=not covered), its coverage in the Spring 2008 version of the workshop course (1=covered; 0=not covered), and a description of each concept is listed in this appendix.

Level	Pre	Post	Concept
1 st	1	1	Scientific knowledge is based on the evaluation of tentative
			hypotheses through systematic observation of nature.
2 nd	1	1	Hypotheses are claims which can be scientifically tested, and
			potentially disproved.
3 rd	1	1	Exploration of initial observations and related knowledge
			contributes to hypothesis generation.
3 rd	1	1	Hypotheses-testing includes using the hypothesis to generate a
			prediction, then making observations and comparing the
			prediction of the hypothesis to the observations.
3 rd	1	1	Hypotheses can be tested with controlled experiments which have
			independent and dependent variables or through natural
			experiments which do not include the controlled manipulation of
- rd			independent variables.
3 rd	1	1	Quantitative patterns in observed results are often illustrated with
• th			graphs.
4 th	1	1	All experiments make assumptions which may or may not be true.
4 th	1	1	Null hypotheses can be disproved but not proved.
4 th	1	1	Inferential statistics estimate the probability that the variation
			between the observations and prediction are simply due to
4 th	4	4	chance.
4 4 th	1	1	Model systems are often used in controlled experiments.
4 2 nd	0 1	1 1	Some hypotheses are represented with <i>mathematical models</i> . The level of acceptance of hypotheses varies greatly as a result
2	I	I	of the number and quality of tests of the hypothesis that have
			supported it.
2 nd	1	1	Scientific facts are observations or hypotheses that have been
-	•	•	supported so many times that they are assumed to be true.
3 rd	1	1	Examples of scientific facts: cells exist; genes are coded into the
-	-	-	structure of DNA; evolution happens.
2 nd	1	1	Theories are major concepts which link together many
			observations and hypotheses.
1 st	1	1	Evolution is the change in the frequency of heritable traits of a
			population across generations.
2 nd			Natural selection can result in adaptive evolution.
3 rd	1	1	Natural selection is differential survival of individuals within a
			population based on a variation in trait.
4 th	1	1	Natural selection is an interaction between individuals and their
			environment.
3 rd	1	1	Natural selection results in evolution if the selected trait is
rd			heritable.
3 rd	1	1	Populations not individuals evolve.
3 rd	1	1	Evolution cannot occur unless there is <i>heritable variation</i> for the
₄ th	,	<u> </u>	trait in the population.
4 th	1	0	Natural selection can result in directional, stabilizing, or disruptive

			changes in phenotypes.
4 th	1	1	Natural selection against a dominant allele can result in rapid
·	•		fixation of the recessive.
4 th	1	1	Natural selection against a recessive allele does not result in fixation.
4 th	1	1	Natural selection <i>favoring heterozygous</i> genotypes maintains a balance of the frequency of alleles in the population and maintains
2 nd	1	1	genetic diversity. Genetic Drift is a random pattern of evolution due to bottlenecks and founder effects.
3 rd	1	1	<i>Genetic drift</i> is due to random sampling error of a trait in association with mortality or dispersal.
3 rd	1	1	Genetic (or demographic) Bottlenecks are random mortality relative to a trait.
3 rd	1	1	Founder effects are random dispersal relative to a trait.
3 rd	1	1	Genetic drift reduces genetic diversity.
3 rd	1	1	Reduced genetic diversity can result in inbreeding depression.
4 th	1	1	Genetic drift and inbreeding depression are problems for endangered species.
2 nd	1	1	Sexual selection is due to differences in fitness due to variation in traits which influence mating success.
3 rd	1	1	Sexually dimorphic traits are more pronounced in the sex which invests less energy in producing gametes and caring for offspring (typically males).
4 th	1	1	Sexually dimorphic traits function as armaments and/or ornaments.
3 rd	1	1	Mate choice can be influenced by pre-existing sensory bias, non- genetic benefits to offspring or female, genetic benefits to offspring.
2 nd	1	1	Speciation occurs when gene flow between diverging populations is blocked.
3 rd	1	1	<i>Microevolutionary processes</i> (natural selection, genetic drift, mutation, gene flow) contribute to speciation.
4 th	1	1	Secondary contact reinforces speciation if hybrids are less fit.
3 rd	1	1	Speciation can occur rapidly or slowly.
3 rd	1	1	Adaptive Radiations are characterized by relatively rapid speciation and diversification within a taxa.
4 th	1	1	Adaptive radiations are triggered by <i>opportunities</i> resulting from environmental or genetic change.
4 th	1	1	Heritable variation associated with adaptive radiations is often associated with <i>regulatory genes</i> .
2 nd	1	1	Extinction is the permanent loss of a species.
3 rd	1	1	Mass extinctions are times of widespread and relatively rapid
-	•	•	extinction rates.
4 th	1	1	The <i>K-T</i> mass extinction resulted in reduced dominance of reptiles and gymnosperms and triggered the adaptive radiations of angiosperms, insects, birds, and mammals.
4 th	1	1	The K-T mass extinction was due to an <i>asteroid</i> impact.
4 th	0	0	Some mass extinctions may have been influenced by the effects of the arrangement of <i>continental plates on climate</i> .
4 th	0	0	We are entering a mass extinction due to climate change, habitat

			destruction and invasive species
1 st	1	1	destruction, and invasive species. Biodiversity is a result of historic patterns of speciation and
I	I	I	extinction
2 nd	1	1	Phylogenies are hypotheses about speciation and extinction
2	•		within a taxa.
3 rd	1	1	Domains indicate that 2/3 of the diversity of life is prokaryotic.
4 th	1	1	The wide range of habitats colonized by <i>prokaryotes</i> is associated
•	•		with their <i>diverse metabolism</i> .
3 rd	1	1	The phylogenetic history of <i>plants</i> is associated with adaptation to
U	•	•	terrestrial environments.
4 th	1	0	The fundamental life history difference between plants and
		-	animals is mitotic growth during the haploid stage of plant life
			cycles to produce <i>gametophytes</i> .
3 rd	1	1	Fungi are more closely related to animals than to plants.
4 th	1	0	Fungi differ from animals in that they secrete enzymes, externally
			digest molecules including cellulose, and then absorb the
			nutrients.
3 rd	1	1	Animal Phyla are associated with morphological, mobility, &
			perceptual adaptations
4 th	1	1	Exo- and endo-skeletons enable precise muscle control of
			appendages
4 th	1	1	Insect pollinators & herbivores co-evolved with angiosperms
1 st	1	1	Phenotypes are determined by genotypes and the environment .
2 nd	1	1	Genes are discrete units on information passed unchanged,
			except for rare mutations, from parents to offspring.
2 nd	1	1	The genetic code is a result of the structure of DNA within
			chromosomes.
2 nd	1	1	Alleles are versions of genes.
3 rd	1	1	Mutation produces new alleles.
4 th	1	1	Mutations can occur at many levels: point mutations,
			chromosomal rearrangements, and changes in ploidy.
2 nd	1	1	Genotypes describe an individual's alleles.
2 nd	1	1	Phenotypes describe observable traits of individuals.
2 nd	1	1	Meiosis, fertilization, and gene expression underlie Mendelian
			patterns of inheritance.
3 rd	1	1	Somatic cells are <i>diploid</i> .
3 rd	1	1	Meiosis randomly separates homologs into haploid gametes.
3 rd	1	1	Genes on nonhomologous chromosomes sort independently
			resulting in genetic variation among gametes.
3 rd	1	1	Crossing over increases genetic variation by rearranging alleles of
			genes between homologs.
3 rd	1	1	Fertilization combines haploid gamete genotypes into diploid
			zygotes.
3 rd	1	1	Dominance relationships describe the phenotypic expression of
			heterozygotes.
4 th	1	1	Pleiotropic genes influence more than one phenotypic trait.
4 th	1	1	Epistatic interactions between gene products influence the
			expression of genotypes into phenotypes.
3 rd	1	1	Quantitative traits are influenced by polygenic genes.
3 rd	1	1	In humans, X-linked genes are hemizygous in males.
4 th	1	1	Males inherit these genes from their mothers.

₄ th			
4 th	1	1	Multiplicative probability describes the increased expression of
- nd			recessive X-linked genes in males.
2 nd	1	1	While mutation is the ultimate source of new alleles,
			recombination produces new combinations of alleles.
3 rd	1	1	In eukaryotes, crossing over, independent assortment, and
			fertilization contribute to recombination.
3 rd	1	1	In prokaryotes, horizontal gene transfer results in recombination.
1 st	1	0	Behavioral traits evolve in response to natural selection.
2 nd	1	0	Behavior is a response to a stimulus .
2 nd	1	0	Behaviors range from innate fixed action patterns to complex
_	-	-	learned behaviors.
2 nd	1	0	Behaviors can be learned through a variety of processes (e.g.
2		Ū	operant, habituation, classical conditioning, imprinting).
1 st	1	1	Populations have dynamic spatial and temporal structures.
2 nd			
Z	1	1	Population's characteristics are estimated with a variety of
and		0	sampling techniques.
2 nd	1	0	The spatial boundaries of populations are influenced by abiotic
			factors, as well as species interactions; both of these factors
			change through time.
3 rd	1	1	Invasive species have moved out of their native region and are
			disturbing natural and human communities.
2 nd	1	1	Population size and density varies through time.
3 rd	1	1	Populations with a constant and positive per capita growth rate
			grow exponentially.
4 th	1	1	All species have a positive <i>biotic potential</i> .
4 th	1	1	Birth rate, death rate, and migration determine r.
4 th	1	1	Birth rate is determined by <i>fecundity and age structure</i> .
4 th	1	1	Death rate is determined by <i>life span and age structure</i> .
4 th	1	1	Age structure causes demographic momentum.
3 rd	1	1	Density-dependent mortality can regulate N at K.
3 rd	1	1	
3	I	1	The global human metapopulation has increased global K,
			reduced d through agricultural, medicinal, and scientific
			innovations, and reduced b through birth control but is still growing
4 st			exponentially.
1 st	1	1	Species interactions influence the evolution of traits, population
- nd			growth, and community structure.
2 nd	1	1	Parasitism, predation, and herbivory are +
2 nd	1	1	Competition is
3 rd	1	1	Intraspecific competition results in density-dependent mortality
			and contributes to K.
3 rd	1	1	Strong intraspecific competition can contribute to coexistence.
3 rd	1	1	Interspecific competition can result in competitive exclusion, niche
			differentiation, and habitat partitioning.
3 rd	1	1	Inter- and intra-specific competition can occur through exploitation
U U	-		or interference.
3 rd	1	1	keystone predators can reduce interspecific competition and
0			increase species diversity of prey species.
2 nd	1	1	Mutualism is + +.
∠ 3 rd	1	1	
3 1 st			Mutualism can promote <i>coexistence</i> and expand niches.
	1	1	Communities change in response to biotic and abiotic factors.
2 nd	1	1	Primary succession initially favors species with high dispersal and

			tolerance.
2 nd	1	1	Secondary succession is promoted by facilitation; slowed by inhibition.
3 rd	1	1	Intermediate disturbance can increase species diversity and productivity
2 nd	1	1	Species diversity increases with decreasing latitude.
1 st	1	1	Energy flows through ecosystems ; nutrients cycle within ecosystems.
2 nd	1	1	Atmospheric nitrogen is common, but nitrogen is often <i>limiting</i> .
3 rd	1	1	Nitrogen fixation, nitrification, and denitrification depend on bacteria.
2 nd	1	1	Photosynthesis & cellular respiration are important components of energy flow and carbon cycling.
3 rd	1	1	Deforestation and burning fossil fuels influence carbon cycling, energy flow, and result in climate change.
4 th	1	1	There are direct and indirect measures of increasing atmospheric carbon dioxide.
4 th	1	1	There is theoretical and empirical evidence of the link between carbon dioxide and climate change.
4 th	1	1	Climate change, along with invasive species and habitat destruction, is resulting in the disruption of natural communities.