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About these notes

This book contains the lecture notes and Python programming manual for
SCIE1000.

We will use these notes extensively, so it is essential that you have your own
copy. Details on how you can obtain a copy will be given in class during the
first week of semester. Please note that there is no text book for SCIE1000,
so these notes are your primary source of information. Do not try to re-use
a copy from your friends or from a previous semester: the notes change
from year to year, and it is very important for you to write things in your
own words.

If you lose these notes then you will probably have big problems. You might
like to write your name and some contact details on the bottom of this page
just in case.

These notes have been prepared very carefully, but there will inevitably
be some (hopefully minor) errors in them. We are continually trying to
improve the notes; if you have any suggestions, please tell us. (Please note
that attributions and web references are not given for some of the pictures in
the lecture notes; a list of attributions is available from the course teaching
team if you are interested.)

These important notes belong to:

If you find them, please return them to me!

I can be contacted via:
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1 SCIE1000 preliminaries

As deep as any ocean
As sweet as any harmony
She blinded me with science
And failed me in geometry

Artist: Thomas Dolby∗

(www.youtube.com/watch?v=2IlHgbOWj4o)

The School of Athens∗ (1510 – 1511), Raphael (1483 – 1520), Stanze di Raffaello,
Apostolic Palace, Vatican.
(Image source: en.wikipedia.org/wiki/Image:Sanzio 01.jpg)

∗ To emphasise that science and knowledge play fundamental roles in human history,

culture and society, each section of the notes commences with two scientifically relevant

cultural experiences, in the form of song lyrics and a work of art. Loosely, one could be

regarded as low culture and the other as high culture; you can decide which is which.

The School of Athens depicts some famous scientists, mathematicians and philosophers,

including Plato, Aristotle, Euclid , Socrates and Pythagoras.
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Introduction

SCIE1000 covers a wide range of topics. At first you might not see how all
of these tie together, but the relationships are surprisingly close. The key
areas covered include:

• specific problems and issues in a range of science disciplines;

• how to design, formulate and test models;

• mathematical techniques;

• computer programming;

• quantitative reasoning and critical evaluation; and

• the nature of science and scientific thinking.

It is likely that you will find some concepts harder than other concepts,
and some areas will be of more immediate interest to you than others. Due
to time constraints it is not possible to illustrate every concept with an
example from each field of science; instead we illustrate concepts with a few
important examples from one or two fields, and cover other fields elsewhere
in the course. Rather than requiring memorisation of specific facts, the
focus of SCIE1000 is to teach various scientific and mathematical techniques
and concepts, and apply these to a wide range of disciplines.

Interestingly, almost every example and case study is either taken from a
research paper or is a fairly accurate model of a realistic situation (so the
examples are not contrived).

This section introduces the teaching team for SCIE1000, then discusses the
course aims (including graduate attributes and learning goals) and different
learning styles, and finishes with a brief description of how to use these
notes.
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1.1 Teaching staff

Here is some information about the members of the core teaching

team for SCIE1000. (You will also encounter other staff members and

tutors.)

Professor Peter Adams is Associate Dean (Academic) in the Faculty
of Science. When he is not busy with administrative things he is a
mathematician in the School of Mathematics and Physics. He studied
mathematics, computer science and commerce at The University of
Queensland, and completed a PhD in mathematics at UQ in 1995. He
has worked as a computer system administrator, research officer and
academic staff member at the University.

His area of research specialisation is combinatorial mathematics and
computing. Combinatorial mathematics is concerned with selecting and
arranging objects subject to constraints; problems involving this kind of
activity arise in a range of practical applications. Thus his research work
spans pure mathematics, computational algorithms and bioinformatics.
Some of his recent research projects include using combinatorial methods
for identifying drug lead molecules, and statistical methods for genome
analysis. He has published over 90 scientific research papers, is an Associate
Fellow of the Australian Learning and Teaching Council, and is Secretary
of the Federation of Australian Scientific and Technological Societies.

(−17 ◦C + tongue + metal pole = idiot)
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Professor Peter O’Donoghue (POD) is one of the three resident
parasitologists in the School of Chemistry and Molecular Biosciences in
the Faculty of Science. He trained in cell biology at the University of
Adelaide, medical parasitology at the University of Munich and veterinary
parasitology at the Hannover Veterinary University. He worked at the
Institute of Medical and Veterinary Science in Adelaide before moving to
the University of Queensland in 1994.

His area of specialisation is clinical protozoology and he practices as a
diagnostician; identifying protozoan parasites causing disease in vertebrate
hosts. His goal is to characterise those species occurring in Australia, the
last great unexplored bastion for micro-fauna. He conducts research on
the morphology, biology, phylogeny and pathogenicity of protozoan species;
including sporozoa, ciliates, flagellates and amoebae in the blood, gut and
tissues of mammals, birds, reptiles and fish. He uses conventional and
modern technologies to study organismal, cellular and molecular biology,
including light and electron microscopy, immunoassays, biochemical profiles
and nucleotide analyses. He has published over 150 scientific papers in five
main areas of research: cyst-forming sporozoa in domestic animals; enteric
coccidia and haemoprotozoa in wildlife; protozoa affecting aquaculture;
endosymbiotic ciliates in herbivores; and protozoal biodiversity. He was
recently awarded a Doctor of Science by the University of Queensland and
was elected Fellow of the Australian Society for Parasitology.

Think small, become a protozoologist! Protozoa rule!

www.smms.uq.edu.au/pod
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Associate Professor Phil Dowe is a Reader in Philosophy in the Faculty
of Arts. He studied Physics, History and Philosophy of Science for a BSc
at the University of New South Wales, and has a PhD in Philosophy from
Sydney University.

He teaches Introduction to Philosophy, Time Travel, Chance Coincidence and
Chaos, Science and Religion, Philosophy of the Life Sciences and Advanced
Philosophy of Science. His main areas of research are philosophy of science
and metaphysics. His books include Physical Causation (Cambridge 2000)
and Galileo, Darwin, Hawking (Edinburgh, 2005). He has published papers
on causation, chance and time.

When pushed to divulge something interesting about himself, after 3 weeks
of deep thought he announced that he “likes good coffee and looking at
lakes”.
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Dr Marcus Gallagher is a Senior Lecturer in the School of Information
Technology and Electrical Engineering. He did his undergrad in computer
science at the University of New England and completed a PhD in Computer
Science and Electrical Engineering at the University of Queensland in 2000.
Since then he has worked at UQ as a Researcher and Academic.

His area of research is Artificial Intelligence, more specifically in machine
learning and nature-inspired optimization algorithms. Broadly speaking,
these algorithms are techniques for solving hard computational problems.
He has collaborated with other researchers in applying these techniques to
problems in astronomy and the analysis of health-care data.

When he used to have spare time, he enjoyed appropriately geeky activities,
including reading science fiction novels, playing computer games and
listening to heavy metal.
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1.2 SCIE1000 students

• SCIE1000 students come from many backgrounds, with diverse

interests. Here is some information about the 546 students who

took SCIE1000 in 2008; the cohort this year should be similar.

Backgrounds

• 88.9% of students completed high school in Queensland, 5.7%

elsewhere in Australia and 5.4% overseas (in China, Japan, South

Korea, Saudi Arabia, Mauritius, Vietnam, Singapore, India,

Malaysia, France, Malaysia Sri Lanka, Vietnam, Hong Kong,

Mexico, New Caledonia South Africa and Slovenia).

• 79.6% came directly from high school, 12.8% had a break of one

year, and 7.6% longer.

• 30.7% had completed Maths C or equivalent, 68.8% Maths B and

0.5% Maths A.

Interests

• 62.2% of students were enrolled in a BSc, 21.9% in a BBiomedSc,

8.2% in a MBBS/BSc, 2.8% in a BBiotech, 2.4% in a BMarSt,

2.1% in a BSc/BA and 0.4% in a BSc/BEd.

• Students were asked to identify their primary area of scientific

interest at the start and end of semester. The responses were:

Area % at start % at end
Biology 22.4% 29.0%

Biomedical Science 51.3% 39.2%
Chemistry 10.4% 7.0%

Computer Science 0.7% 0.6%
Earth Sciences 1.3% 1.5%

Geographical Sciences 0.7% 0.6%
Mathematics 2.4% 6.1%

Physics 4.1% 6.1%
Psychology 3% 4.6%

Other 3.7% 5.5%
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Attitudes

• When asked to rate the importance of Mathematics to their

area of science, on a scale of 5 (very important) to 1 (very

unimportant), 30.7% of students responded 5, 49.6% responded 4,

11.3% responded 3, 2.8% responded 2 and 0.7% responded 1.

• When asked to rate the importance of Computing to their area of

science on the same scale, 15.6% responded 5, 56.8% responded 4,

21.5% responded 3, 5.2% responded 2 and 0.9% responded 1.

Final grades

• The final grade distribution for SCIE1000 is shown in the following

table. A grade of 7 is the highest grade, and any grade below 4

represents failure.

Grade % students (2008) % students (2009)
7 13.01% 8.96%
6 25.09% 21.88%
5 26.21% 28.33%
4 24.72% 26.04%
3 4.83% 7.50%
2 5.76% 4.79%
1 0.37% 2.50%

Course evaluations

• At the end of semester, UQ asks students to assign each course an

overall “rating”, ranging from 5 (Outstanding) to 1 (Very poor).

• Results from 2009 for BIOL1020 (twice), BIOL1030, BIOL1040,

CHEM1020, CHEM1030, PHYS1002, PHYS1171, SCIE1000 and

STAT1201, in decreasing numerical order (not course order) were

4.05, 3.98, 3.91, 3.81 (SCIE1000), 3.79, 3.64, 3.55, 3.45, 3.43, 3.22

and 3.18.

• Feedback from students identified ways to improve the course,

including reducing the length and number of assignments, changing

how Python is taught, linking tutorials and lectures more closely,

and altering the Philosophy content. We have made these changes.
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1.3 Mutual obligations

We believe that students and lecturers in a course incur a number of

obligations, outlined below. Each party should inform the other if they

believe that these obligations are not being met.

We will do our best to deliver a course that:

1. contains modern, interesting content from a range of science areas;

2. is relevant to your studies and future professions;

3. is intellectually challenging, accurate and correct;

4. is well-taught, by a team of engaging, professional experts;

5. respects your diverse backgrounds, aspirations and abilities;

6. helps you to improve both your technical knowledge and your

generic learning skills;

7. includes assessment that is appropriate, challenging and identifies

your level of skills, without being excessive; and

8. provides you with useful, appropriately timed feedback.

We expect that you will do your best to:

1. commit an appropriate amount of time, effort and intellectual

engagement to your studies, and submit assessment on time;

2. attend lectures, tutorials and computer laboratory classes, and

remain quiet and attentive in class;

3. respect your classmates, the teaching staff and the course content;

4. complete necessary pre-readings before lectures;

5. accept that at times we will cover content which you will find

difficult, or of which you may not immediately see the relevance;

6. actively study all components of the course, including science,

mathematics, computing and philosophy;

7. not plagiarise from classmates or other sources; and

8. seek help and advice in a timely manner.
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1.4 Why have a special science course?

Many governments and industries have commented on the recent global
decline in the numbers of career scientists. Collectively, they are looking
to higher educational authorities to redress this situation by providing
appropriate training. In Australia, state and federal governments are
exploring incentive schemes and have initiated policy changes. The
Queensland Department of Education, Training and the Arts has developed
a comprehensive paper entitled Towards a 10-year plan for science,
technology, engineering and mathematics (STEM) education and skills in
Queensland. Amongst other things, this report states:

“The role of STEM cannot be underestimated in preparing Queens-
landers for the challenges and opportunities of the future. The
Queensland economy is booming. Strong demand for natural re-
sources and the fastest-growing population in Australia are priming
the rapid growth of Queensland’s economy. However, our fu-
ture prosperity cannot rely solely on the buoyancy of traditional
industries and dynamic population growth. Global competition,
market instabilities and changing trends in immigration are placing
increasing pressures on the growth of the state’s economy. To
meet these challenges, Queensland needs to continue to encourage
the emergence of new high-value, high-growth industries of the
future and apply strategies to value-add to traditional industries.
International experience demonstrates that high-growth economies
are those that build upon strong foundations to move towards a
knowledge-based economy. A workforce of scientifically and tech-
nologically literate people is key. With identified shortages across
the engineering, science and medical professions, there is a growing
need for students to specialise in STEM disciplines.”

[www.education.qld.gov.au/projects/STEMplan]

Science is based on observation, hypothetico-deductive logic, experimenta-
tion, critical interpretation and reproducibility. Scientists are trained to
be innovative, honest, precise, rigorous and critical. However, the training
and attributes we look for in scientists are not always evident in science
education programs. Many programs focus on content, especially theory,
and graduating scientists may lack generic and specific scientific skills.

A recent review (2007) of the Bachelor of Science (BSc) program at UQ con-
cluded that not enough foundational courses and too many specialist courses
were being offered. The BSc program was revised to provide a stronger
first-year focus on the enabling sciences (mathematics, chemistry, physics
and biology), including quantitative skill development and computing, in
keeping with modern technologies.
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The course SCIE1000 was developed to focus on fundamental quantitative
skills within the context of science. Mathematics is considered to be the
primary enabling science as it is fundamental to all other sciences.

Conventional mathematics education seems to always generate the common
lament from students: “When and where are we ever going to use this?” In
this course we will show you that science and mathematics are intricately
linked. Certainly, some science is non-mathematical, and some mathematics
has no direct use in other sciences, but in many cases mathematics and
science are identical (so an equation that describes population growth over
time is both mathematics and science).

Globally, improving mathematics education has been identified as a
common goal within scientific communities. For example, the US National
Research Council wants to “Transform undergraduate education for future
research biologists” and has published a booklet entitled BIO2010 [National
Academies Press, 2003. ISBN 0-309-08535-7]. They consider that the
focus of educational programs in mathematics and computer science
should be the acquisition and processing of data, quantitative analysis and
display, modelling, prediction, program simulations, database access, search,
retrieval, and in silico (computer) experiments.

Finally, scientific writing is an important component of SCIE1000. Pro-
fessional scientists are called upon to write three main types of document:
grant applications; scientific papers; and literature reviews. While the
instructions given to authors by granting agencies, publishing houses and
editors may differ, there are many common elements to these documents.
All three are subject to peer review by independent referees to gauge
integrity and quality, they generally adhere to a ‘scientific’ format, and they
are mostly written in formal language (third person passive). Scientists
conform to prescribed formats when publishing material, and they write
for other scientists, rather than for the community at large. The growing
demand to revise science communication has created jobs for science writers
and knowledge brokers, third parties who are not science specialists but are
trained communicators able to simplify and explain science to society.
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1.5 Graduate attributes

UQ uses a teaching and learning paradigm called the constructive alignment
model, whereby desirable graduate attributes are articulated within specific
course learning objectives, which are achieved through relevant instructional
activities and assessment tasks. It is also known as the CIA model, whereby
Curriculum is linked to Instruction and Assessment. This approach ensures
that all course components are interlinked and integrated.

Assessment
Tasks

Instructional 
Activities

Learning
ObjectivesAttributes

Graduate

Education authorities recognise three domains of learning (collectively
known as the SACK model):

• psychomotor (about doing), involving skills (S);

• affective (about feeling), involving attitudes (A); and

• cognitive (about thinking), involving concepts (C) and knowledge (K).

UQ courses cannot include only content and technical procedures, but must
also include generic skills applicable to vocation, employment, community
and society. The BSc program identifies seventeen graduate attributes in
five main categories. These are:

• In-depth knowledge of field of study, including knowledge,
understanding and perspective.

• Effective communication, including interaction, written and spoken
communication and IT competency.

• Independence and creativity, including the ability to work, learn,
adapt, identify, create, innovate and solve.

• Critical judgment, including the ability to define, analyse, critique,
evaluate, reason, decide and reflect.

• Ethical and social understanding, including responsibility, respect,
appreciation and diversity.

Staff cannot simply pay lip-service to these graduate attributes, but have
to demonstrate where and how they are embedded in each course. This
information is available in the electronic course profile.
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1.6 Learning objectives

The broad aims of this course are to instill an appreciation of the quan-
titative skills and fundamental philosophies required for the practice of
modern science, provide interdisciplinary contextual relevance, improve the
mathematical and computational skills and communication skills of students
and engage them in the UQ ‘science community’.

Students will learn to:
• Analyse the interdisciplinary nature of modern science;

• Explain and demonstrate the importance of modelling in science;

• Apply fundamental mathematical techniques to a range of scientific
disciplines;

• Design and write simple computer programs in the language Python;

• Interpret the philosophy of science and scientific thought;

• Evaluate critically quantitative scientific information;

• Communicate scientific information in a logical and appropriate style;
and

• Describe and discuss key issues in science, including social and
ethical issues.

As you will notice, none of the learning objectives directly addresses
specific content, neither scientific nor mathematical. For instance, they do
not state that students will learn algebra, differential calculus, the laws of
thermodynamics or the molecular structure of DNA. The learning objectives
are more than content-driven, and also include process. To this end, all of
the learning objectives commence with verbs such as analyse, explain, apply
or design. SCIE1000 will combine theory with practice in all class activities.

The scope, sequence and schedule of course work has been built around a
logical progression of principles which have been contextualised with real
relevant scientific topics from a diverse array of disciplines. Mathematical
principles covered will include models, functions, exponentials, logarithms,
matrices, derivatives, optimisation, numerical methods for solving equations,
integration and differential equations. Key scientific concepts will be drawn
from chemical, physical, natural, earth, social and life science disciplines.
Mathematically, the course can be likened to a fixed menu dinner, while
scientifically, it is a smorgasbord. Hopefully, this framework will serve to
reinforce our contention that mathematics underpins all the sciences.
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1.7 Learning styles

Universities differ in many ways from secondary schools because they place
the onus for learning firmly on the student as a responsible, independent
adult learner. Even though there are many rules and regulations governing
university courses and programs (and even professional codes of conduct),
essentially the responsibility is on you, the student, to attend classes and
examinations.

University staff schedule and conduct classes but usually they do not
monitor attendance, although your failure to attend small group classes
(such as tutorials and laboratory classes) will be conspicuous to your tutor.
Students must exercise some self-discipline as independent learners and
resist the temptation to miss classes. If you skip classes, you will be at a
disadvantage compared to the rest of the class and will not perform as well.

Many students have part-time employment to earn money for subsistence
but they should not treat university as secondary to that employment. Full-
time enrolment is exactly that. Although formal contact hours may only be
20 – 24 hours per week (5 – 6 hours per course for each of 4 courses), you
are expected to undertake independent study (preview, review, extended
readings, research and so on) on a matching basis (1 hour study for each
hour of scheduled contact).

Your first substantial task will have been to organise your weekly schedule
of classes. Ensure that you adhere to that schedule as it provides structure
to the massive amount of content to which you will be exposed. In most
cases, it will have been arranged for tutorials and practicals to follow-on
from lectures so that small group activities have direction and focus.

During your degree, you will accumulate an extraordinarily large amount
of material: reference texts, recommended readings, lecture booklets, tute
notes, practical guides, and a huge assortment of electronic files (documents,
power-points, spreadsheets and databases, accessed through intranet and
internet servers (such as Blackboard and Google). You must be organised
and develop appropriate systems to sort, store and retrieve these materials.

Clipart
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You MUST take notes during your classes. Simply listening and observing
classes does not guarantee data retention or understanding. Turning all that
sensory input into motor output by taking notes ensures that your brain
has been engaged. The very act of writing involves many neural pathways
and cognitive functions that serve to enhance comprehension and memory.
Short-term and long-term memories involve different parts of the brain and
sorting occurs during sleep. Periodic review of material ensures information
persists in long-term memory, so taking notes during study (preview and
review) facilitates better retention and understanding. Get into the habit
of taking notes at every possible opportunity!

Marieb et al. 2007, Fig. 11.1

There are many different modalities of education. All recognise the polarity
of teaching (teacher-centred) and learning (student-centred) and attempt
to reconcile these perspectives. Historically, teaching and learning occurred
in small groups through question and discussion (the so-called Socratic
method) and skilled trades were, and still are, taught through individual
apprenticeships. With the Industrial revolution came an educational
revolution. Class sizes grew and methods of teaching large groups were
introduced, notably in the form of lectures. While primary and secondary
schools have retained small class sizes to facilitate behaviour modification,
tertiary institutions have embraced lecture formats as economical means
for mass education. However, this does not mean lectures provide optimal
learning opportunities for students.

Generally speaking, teaching and learning models form a continuum
from what educational theorists call transmissivism (where knowledge is
transmitted to students, such as in didactic lectures) to constructivism
(where students construct meaning through dialogue). The former assumes
the students’ ‘glass of knowledge” can be filled by the teacher, while the
latter recognises that students already have some knowledge which must
first be activated and validated before it can be built upon.
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Students attend classes to learn, but what actually is learning? It is defined
in many dictionaries simply as an increase in knowledge, but this covers
many contexts, including acquisition, retention (memory), recognition
(principles, ideas, concepts), cognition (making sense, understanding)
and action (developing skills and competencies). Various strategies are
used to avoid surface learning (atomistic in detail, isolated knowledge,
limited understanding, quickly forgotten), foster deep learning (holistic in
perspective, relational knowledge, good understanding, long-term retention)
and develop and enhance student qualities (personal, social, philosophic,
psychologic).

It is obvious that there is no single type of instructional activity that
is universally suitable. Authorities recognise that a tailored teaching
approach must be developed for each course, and even each cohort. In
SCIE1000, classes have been scheduled for five hours each week during
semester, ranging from didactic lectures (a lecturer speaking at the front of
a room), dialectic lectorials (lectures with group discussions and activities),
mauieutic tutorials (small-group discussion groups) and interactive computer
laboratories (individual and small-group exercises). All classes will provide
students with the opportunity to practice solving problems in the context
of science, as befits contemporary workplace practices.

If you are interested in additional information on different learning
styles, including an on-line survey to help identify what learning style
most suits you, then you may like to visit the website:

www4.ncsu.edu/unity/lockers/users/f/felder/public/Learning Styles.html
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1.8 Assessment

While scientists concentrate on content and teachers on process, students
typically focus on assessment. It has long been recognised that assessment
drives learning. In the past, heavy emphasis has been placed on summative
assessment tasks to measure learning rather than formative assessment
to support learning. Assessment has traditionally been facilitated by
measurement models which rate individual performance against population
normal distributions rather than by standards models which rate perfor-
mance against specific criteria. Courses should endeavour to assess for
understanding. This involves defining what we mean by understanding.

Five hierarchical levels of understanding are recognised: prestructural
(do not ‘get it’); unistructural (identify single elements); multistructural
(identify similar elements); relational (identify patterns); and extended
abstract (generalise). Desirable learning outcomes should involve higher
order understanding and assessment tools should evaluate cognitive,
metacognitive and social competencies and affective dispositions. University
courses should aim for at least multistructural pattern recognition and
relational thinking (typified by compare/contrast questions).

The emphasis of any course on quantitative skill development must be on
the demonstration of those skills through problem-solving. In SCIE1000,
students will be guided through assessment requirements in classes and
have the opportunity to work through examples and practice questions in
their own time in addition to during class time. Lecturers and tutors are
committed to providing timely and informed feedback to students, so that
exam time will hold no surprises.

Details of assessment are in the course profile. Many questions will involve
problem-solving and marks will be allocated not only for final answers but
also for process logic (working out). You will be given ample instruction
throughout the course, with practice questions given in classes and on the
Blackboard website.
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1.9 How to use these notes

This booklet contains many of the teaching materials required for

SCIE1000. In lectures we will mostly focus on this material. You will

need access to these notes in every lecture, as you will write additional

notes and working directly on them. The lecture notes are organised

into the following main components:

• general notes, which introduce new ideas and content;

• key points, which summarise key definitions and concepts;

• examples, which give fully-worked examples showing how to solve

important problems;

• questions, through which we will work in class, and which you can

try to solve yourself;

• Python examples, which show how to do something in Python;

• case studies, which illustrate several aspects of a large prob-

lem/issue and run for a number of pages;

• extension materials, which give some non-assessable extra material,

often quoted from a media report or a scientific paper; and

• blank space, at the bottom of each page, in the margins, and at the

end of each section, so you can write additional notes if you wish.

These components are all presented in different ways, to make them

easier to find. A brief example of each one is:

• General notes (involving words and mathematical content) are

often written with bullet points.�
�

�


Key points

Key points are written in boxes with rounded corners, like this, with

the title identifying the key point.

Example 1.9.1 How do worked examples look?

Answer: Worked examples are written in double boxes, like this.
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Question 1.9.2 Questions are written like this, in bold boxes, with

space to write the answers (including working). We will complete

these questions in lectures, often with a mixture of individual work,

group discussion and class discussion. These questions give a good

idea of what will be on your exam.

Python Example 1.9.3

Examples involving Python programming are written like this.

In each case there is some introductory text, followed by sample

Python input and output, shown in this font, with numbered

lines.

1 >>> 6+4

2 10

Case Study 0:

An example of a case study

Case studies look like this. The title summarises what the case study is

covering, and this is followed by several pages of examples, questions,

key points and so on. Each case study ends as follows.

End of Case Study 0.

Extension 1.9.4 (From (some attributed source))

Extension materials look like this, with the source identified.

This material is not examinable.

Note that many of the examples and concepts in the SCIE1000 notes

are worthy of additional exploration. If you are interested, you might

like to look up more information about the topic, using web searches

and other resources. In some cases the SCIE1000 website is a good

place to start.
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2 A short discussion of nearly everything

Gaudeamus igitur, Iuvenes dum sumus
Post iucundam iuventutem
Post molestam senectutem
Nos habebit humus, Nos habebit humus.

Vivat Academia,Vivant professores
Vivat membrum quodlibet
Vivant membra quaelibet
Semper sint in flore,
Semper sint in flore.

Artist: traditional

(www.youtube.com/watch?v=aLUKfU2AOBY)

(www.youtube.com/watch?v=kK2cAsXMn5w)

(slightly rude)

SCIE1000, Section 2.0. Page 26
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source: Museum publication.)



Introduction

Curiosity is an enduring human characteristic. For all of recorded history
(and obviously for much longer – otherwise we would never have developed
recorded history!), people have been asking questions such as “Why. . . ”,
“What causes. . . ”, “What will happen if. . . ” and “How can we. . . ”.

Curiosity has motivated people to explore Earth and space, to investigate
a whole range of phenomena, and to seek new knowledge in the face of
adversity or even great personal risk.

We all know that the universe is incredibly complex. Scientific investigation
is undertaken in an attempt to make some sense of this complexity by
enabling us to understand, explain, predict and (in some cases) influence
phenomena.

Understanding and doing science requires a range of skills and knowledge,
including: knowledge about the discipline area; an ability to think logically
and creatively; an ability to observe, collect data and communicate; and
an ability to formulate and apply models. The science courses you take
at University (and at school) are largely aimed at improving your skills in
these areas.

This chapter commences with a brief discussion on the nature of science
(we will cover this in more detail in Chapter 6), then identifies six broad
areas that are at the core of science, discusses why they are important,
shows where they will be covered in your studies, and finishes with a specific
description of the role SCIE1000 will play in developing your skills in these
areas.
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2.1 Science

Question 2.1.1 Consider the following quote from the American

Physical Society (www.aps.org/policy/statements/99 6.cfm):

“Science extends and enriches our lives, expands our imagination

and liberates us from the bonds of ignorance and superstition. . .

Science is the systematic enterprise of gathering knowledge about the

universe and organising and condensing that knowledge into testable

laws and theories.

The success and credibility of science are anchored in the willingness

of scientists to:

• Expose their ideas and results to independent testing and repli-

cation by others. This requires the open exchange of data, pro-

cedures and materials.

• Abandon or modify previously accepted conclusions when con-

fronted with more complete or reliable experimental or observa-

tional evidence.

Adherence to these principles provides a mechanism for self-

correction that is the foundation of the credibility of science.”

Briefly discuss the quote. Do you agree? Are any key points missing?
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Question 2.1.2 Consider the following quote from the Federation

of Australian Scientific and Technological Societies (www.fasts.org):

“Science has evolved over thousands of years of human enquiry to

provide a rational basis for understanding and predicting what hap-

pens in the world around us. We rely on science to enhance our

standard of living, to keep us healthy, and to address the problems

and challenges that we face.

Over the last five hundred years humanity has developed a new way

of systematically testing ideas against physical evidence. The modern

world is a direct product of the growth of scientific knowledge sparked

by that understanding.

Through scientific evaluation, we ensure that the knowledge we need

is as reliable and as rigorously tested as we can make it. It is this pro-

cess of scientific thought and examination that gives us confidence.

• Science works by systematically testing ideas against the evi-

dence.

• Evidence-based ideas are examined by peer review and published

for further scrutiny in the scientific literature so that additional

tests can be applied.

• Scientific ideas are adopted when they usefully describe the

world.

• When scientific ideas are widely accepted they become main-

stream, and are applied until replaced by the widespread adoption

of an alternative idea that makes better sense of the evidence.”

Briefly discuss the quote. Do you agree? Are any key points missing?
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Science

Science aims to understand, explain, predict and influence phe-

nomena. Understanding and doing science requires:

• discipline knowledge and content;

• scientific thinking and logic;

• communication and collaboration;

• curiosity, creativity and persistence;

• observation and data collection; and

• modelling and analysis.

and logic

Observation

Modelling and

Communication
and

Curiosity,

data collection collaboration

knowledge
Discipline

creativity

analysis

and

Scientific thinking

persistence
and

SCIENCE

• Most of your study and professional development will focus on

enhancing your skills in these areas.

• The rest of this section shows how and where you will do so in

some UQ courses, and specifically the role of SCIE1000.

• We also give tables showing how the coordinators of seven 1st year

UQ science courses divide their courses into these categories.
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2.2 Discipline knowledge

• Discipline knowledge (DK) describes the

language, information and skills specific to each discipline area.

• DK includes such things as:

– fundamental principles of the scientific area;

– how to measure and record relevant data;

– an appreciation of what is ‘interesting’;

– the language and terminology of the discipline;

– an understanding of relevant history, ethics and key milestones;

– an understanding of what is known and what is not known; and

– knowledge of the potential applications and the limitations of

the discipline.

• Common sources of DK include:

– research papers, journals, textbooks and online resources;

– seminars, conferences and personal discussions; and

– schools and universities, including courses such as BIOL,

CHEM, ERTH, MATH, PHYS and PSYC.

• The role of SCIE1000:

– SCIE1000 focuses much less on DK than most other courses.

– We will define the terminology and concepts that you need,

but if you are completing courses in (say) physics, chemistry,

biology or mathematics, then you will acquire much more

specific discipline knowledge in those courses.

DK % of various UQ science courses:

SCIE BIOL MATH BIOL STAT CHEM CHEM

1000 1030 1051 1020 1201 1030 1020

5% 40% 35% 40% 20% 35% 25%
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2.3 Scientific thinking and logic

• Scientific thinking and logic (STL) describes the

approaches and thought processes associated with performing

systematic investigations and making valid inferences.

• STL includes such things as:

– hypothesis formulation and testing: the scientific method;

– mounting valid, convincing arguments;

– following logically defensible sequences of thoughts or steps;

and

– developing and applying a philosophy of rigour, precision and

accuracy to all aspects of science.

• Common ways to increase skills in STL include:

– exposure to written and verbal communications from experi-

enced scientists;

– undertaking substantial, open-ended, authentic experiments

and projects;

– studying philosophy, mathematics and formal logic; and

– participation in learning activities at schools and universities.

• The role of SCIE1000:

– SCIE1000 has a substantial focus on STL, with formal com-

ponents on scientific thinking, the scientific method and the

philosophy of science.

STL % of various UQ science courses:

SCIE BIOL MATH BIOL STAT CHEM CHEM

1000 1030 1051 1020 1201 1030 1020

15% 10% 20% 15% 10% 20% 30%
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2.4 Communication and collaboration

• Communication and collaboration (CC) are the processes by which

scientists use information from others, make their results available

to others, and work together.

• CC includes such things as:

– writing, reading, interpreting, speaking, listening, visualising

and critically evaluating.

– conciseness, precision, care and clarity of expression;

– understanding electronic and other communication mechanisms;

– familiarity with relevant information sources;

– the ability to interact effectively with discipline experts;

– the ability to work as a member of a team; and

– the ability to collaborate in a cross-disciplinary manner.

• Common ways to increase your CC skills include:

– practise in writing, reading and presenting scientific informa-

tion;

– undertaking group work; and

– gaining familiarity with a range of scientific disciplines.

• The role of SCIE1000:

– SCIE1000 has a substantial focus on CC.

– You will be assessed on your scientific writing, quantitative

reasoning, and ability to collect and synthesise information.

– You will also cover a range of topics, increasing your ability to

collaborate across disciplines.

CC % of various UQ science courses:

SCIE BIOL MATH BIOL STAT CHEM CHEM

1000 1030 1051 1020 1201 1030 1020

15% 20% 10% 15% 10% 15% 10%
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2.5 Curiosity, creativity and persistence

• Curiosity, creativity and persistence (CCP) describe relatively

intangible characteristics which are commonly identified as drivers

of success, particularly in research and knowledge discovery.

• CCP includes the ability to:

– constantly ask “interesting” questions;

– use lateral thinking to develop new approaches;

– devise solutions to difficult problems;

– apply knowledge in new ways and to different scenarios; and

– develop hypotheses to explain unexpected observations.

• These skills are somewhat innate, but can be increased by:

– practising on a range of problems;

– attending seminars, classes and presentations;

– observing and collaborating with creative people;

– believing in the importance of what you do; and

– working in an area that is of great interest to you.

• The role of SCIE1000:

– SCIE1000 has a substantial focus on CCP.

– We explore the role of creativity in science, and cover interest-

ing, authentic examples from a wide range of disciplines.

CCP % of various UQ science courses:

SCIE BIOL MATH BIOL STAT CHEM CHEM

1000 1030 1051 1020 1201 1030 1020

15% 15% 15% 5% 10% 10% 5%
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2.6 Observation and data collection

• Observation and data collection (ODC) describes the processes and

techniques used to collect data about particular phenomena.

• ODC includes such things as:

– understanding which data is relevant;

– knowing how to collect and record data;

– knowing what levels of accuracy and precision are required; and

– appreciating any ethical or related issues.

• Methods of developing skills in ODC include:

– reading research papers and books, attending seminars and

conferences, and engaging in personal discussions;

– practising data collection in association with laboratory work

and field trials; and

– participating in experimental courses, such as BIOL, CHEM,

ERTH, PHYS and PSYC.

• The role of SCIE1000:

– For most students, SCIE1000 includes very little observation or

data collection.

– SCIE1000 focuses much more on how data can be used to

develop models.

ODC % of various UQ science courses:

SCIE BIOL MATH BIOL STAT CHEM CHEM

1000 1030 1051 1020 1201 1030 1020

0% 10% 0% 15% 10% 15% 15%

SCIE1000, Section 2.6. Page 35



2.7 Modelling and analysis

• Modelling and analysis (MA) describes the processes by which

mathematics, statistics, computation and related techniques are

used to represent phenomena approximately, and hence allow

predictions to be made.

• MA includes such things as:

– using statistics to allow for uncertainty and errors in measured

data;

– developing equations to approximately represent data;

– using mathematical techniques to simplify or solve the equa-

tions; and

– writing and executing computer models.

• Methods of developing skills in MA include:

– reading research papers and books, attending seminars and

conferences, and engaging in personal discussions; and

– participating in courses on modelling, mathematics and statis-

tics.

• The role of SCIE1000:

– A key goal of SCIE1000 is to develop your MA skills; much of

the course is devoted directly to this.

– We will discuss the modelling process in detail, then explore a

range of relevant mathematical techniques.

– We will also learn how to write computer programs for mod-

elling.

MA % of various UQ science courses:

SCIE BIOL MATH BIOL STAT CHEM CHEM

1000 1030 1051 1020 1201 1030 1020

50% 5% 20% 10% 40% 5% 15%

SCIE1000, Section 2.7. Page 36



2.8 Some UQ science courses

• Through your studies, different courses will develop different

aspects of your science skills, which together allow you to graduate

with the range of skills and knowledge necessary to understand

science and be a scientist (if you so choose).

• The following diagram demonstrates the relative balance of science

skills covered by various first-year courses. Data from the tables

on previous pages have been converted into relative font sizes.

• Make sure you appreciate what each course aims to achieve, and

hence how your courses will fit together and how they differ.
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2.9 Space for additional notes
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3 A career in modelling
I’m very well acquainted, too, with matters mathematical,
I understand equations, both the simple and quadratical,
About binomial theorem I’m teeming with a lot o’ news,
With many cheerful facts about the square of the hypotenuse.
I’m very good at integral and differential calculus;
I know the scientific names of beings animalculous:
In short, in matters vegetable, animal, and mineral,
I am the very model of a modern Major-General.

Artist: Gilbert and Sullivan

(www.youtube.com/watch?v=iSloW2coCDQ)

The Vitruvian Man (c 1487), Leonardo da Vinci (1452 – 1519), Gallerie
dell’Accademia, Venice, Italy. (Image source: en.wikipedia.org)
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Introduction

We all know that the world is an incredibly complex place. It has been
suggested that not only is the universe far more complex than we imagine,
it may be more complex than we can imagine.

The primary goals of science are to understand, explain, predict and
influence phenomena. To make this manageable, scientists regularly develop
models of the phenomena. Models typically balance simplifying assumptions
and approximations with accuracy and real-world applicability.

There are many different types of models. There are conceptual models
which help to visualise what is happening, there are models containing
systems of mathematical equations which aim to represent a phenomenon,
and there are computer models which can be used for complex simulations.
Many models include a hybrid of these components. However, all models are
an approximation to the real world, and no model of a complex phenomenon
will ever be completely accurate in every situation.

This section gives a brief introduction to different types of models, and
some of the important background knowledge required for many models.

Some of the examples/contexts we will discuss are:

• Growth rates of tropical birds.

• Fluid flow.

• Cholesterol and heart disease.

Specific techniques and concepts we will cover include:

• How models, mathematics and computing are important in modern
science.

• Different types of models and how they are developed.
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3.1 Science’s next top model

• Earlier we said that science aims to understand, explain, predict

and influence phenomena.

• The concept of change (and the rate at which it occurs) is

fundamental to science. (If we know for certain that something

will not change then there is usually little interest in studying it.)

• Change can be naturally occurring or man-made, and desirable or

undesirable.

• Most science is fundamentally quantitative, because quantifying

phenomena allows us to measure, describe and compare variations

in an efficient and precise manner.

• Science often involves observing and measuring values, such as

the amount, frequency, magnitude, duration or rate of some

phenomenon, then answering predictive questions about that

phenomenon, such as

– “What will happen if . . . ?”

– “What causes . . . ?”

– “How can we . . . ?”

– “Why does . . . ?”

• A common approach is to use a model, based on the observed,

measured data. This is a simplification of the real world which

allow us to:

– make predictions about likely future events;

– evaluate the possible impacts of interventions; and

– investigate the robustness and stability of a phenomenon.

• Statistics is fundamental to this process, allowing development of

a theoretical model based on uncertain, imprecise data.
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Models

All models aim to simplify reality sufficiently to allow approxima-

tions to be made and calculations to be done, while at the same

time being convenient and easy to use, and providing a sufficiently

accurate reflection of the true values to enable useful and meaningful

conclusions to be drawn.�

�

�



The process of modelling

The process of modelling typically involves:

• observing some phenomenon;

• thinking about what relationships or patterns are important;

• measuring and recording data;

• using statistics to address uncertainty, imprecision and errors;

• developing equations to approximately represent the data;

• using mathematical techniques to simplify the equations;

• writing and executing computer models;

• interpreting results and relating them to the phenomenon;

• comparing modelled outcomes with actual outcomes;

• refining the model as required;

• applying the model using various conditions and assumptions;

• predicting possible future outcomes; and

• communicating results to an appropriate audience.

• Ways of selecting ‘appropriate’ models include:

– using “common sense”;

– using logical deduction;

– using existing knowledge of similar phenomena; and

– observing the measured data and seeing what it “looks like”.
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• Many phenomena in nature change according to a small number

of underlying patterns (such as at a constant rate or at a rate

proportional to the current value).

Question 3.1.1 List some strengths and weaknesses of each of the

five common ways of presenting quantitative models:

(a) Words

(b) Values (such as weight/height/age tables)

(c) Pictures (such as graphs)

(d) Equations

(e) Computer programs

• Note that there is nothing “right” or “wrong” about each approach:

each is suited to different uses and/or target audiences. Most

models can be developed and presented in all of these ways.

• In SCIE1000 we will use all five methods, but will focus on the

final two: equations and computer programs.
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3.2 Mathematics and models

• Some people believe that mathematics is an abstract process and

is separate from science and the ‘real world’, unlike disciplines such

as biology or chemistry which directly relate to the real world.

• These perceptions of mathematics and science are incorrect.

• Certainly, scientists use a combination of discipline knowledge

and a special language to describe nature and the real world (for

example, biologists use taxonomic categorisations, anatomical

descriptions and medical terminology).

• Mathematicians also use a combination of discipline knowledge

and a special language to describe nature and the real world

(for example, exponential, linear and square root all describe

relationships between observed values in natural phenomena).�

�

�

�

Mathematics

Mathematics is a standardised formal language which allows us to:

• develop models to represent reality;

• perform correct, logical deductions;

• communicate information without risk of ambiguity or misun-

derstanding; and

• draw conclusions and make predictions.

• Whatever your area of science, you will need to learn the scientific

language and knowledge that allows you to practise in that area.

• Similarly, because all areas of personal and professional life include

quantitative concepts, everyone needs to learn the mathematical

language and knowledge that allows them to live and work.

• Studying and working in more specialised areas (such as sci-

ence) requires a higher level of mathematical knowledge and

sophistication.
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• SCIE1000 includes mathematical language and knowledge.

• However, we do not study mathematics for its own sake, or to

develop new mathematical knowledge; if you wish to do that then

enrol in discipline-based mathematics courses.

• Instead, we study mathematics solely for its fundamental role

in describing and modelling the real world, and we will interpret

mathematical language in this context.

• For example:

– Statistics is the process of addressing uncertainty, imprecision

and errors in data, allowing approximate patterns to be

observed and deduced.

– The mathematical function is the formal representation of a

pattern in a collection of values.

– Logical deduction describes the process of starting with a

collection of facts, approximations and knowledge, and then

following a sequence of logically defensible steps which lead to

valid conclusions.

• Sometimes we cannot directly measure a phenomenon of interest

(due to physical, ethical or financial limitations). Instead, we may

be able to measure and model a related phenomenon.

• We can then model the (unmeasurable) quantity using analytical

techniques such as:

– algebra, which allows us to conduct logically valid manipula-

tions, simplifications and transformations;

– differentiation, which allows us to model an (unmeasurable)

rate of change in a (measurable) phenomenon; and

– integration, which allows us to model an (unmeasurable)

phenomenon based on a (measurable) rate of change.

• In SCIE1000 you will mostly use mathematics from your previous

study to develop models.

SCIE1000, Section 3.2. Page 45



• The following example shows a medical application in which the

phenomenon of interest is difficult to measure directly, but a related

phenomenon can be measured and modelled, and mathematics is

used to deduce information about the primary phenomenon.

Example 3.2.1 The cardiac output of a heart is the volume of

blood pumped by the heart in a given time period; a typical value

for an adult human is around 5 L per minute.

There are many reasons to measure cardiac output (for example,

to identify contraction abnormalities due to the presence of heart

muscle scar tissue), but it is physically difficult to measure directly.

By injecting a fluorescent dye into the right side of the heart, it is

possible to use a probe to measure the dye concentration in blood

which has passed through the heart, at various time intervals.

Thus, we want to measure the cardiac output, but instead can only

measure the concentration of the dye in blood over time.

The problem is resolved using the dye dilution method as follows:

• Use the observed concentrations, statistics and mathematics

to model the measured dye concentrations over time with a

mathematical function, say c(t). This is commonly called the

dye dilution curve.

• Let the initial amount of dye injected be D, and let T be the

time at which the observed concentration is (close to) zero.

• Then we can estimate the cardiac output C using some math-

ematical techniques, including a mathematical integral:

C =
D∫ T

0

c(t) dt

Mathematics gives us a range of logical and valid techniques

that allow us to deduce information that we cannot measure

or obtain in other ways!
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Case Study 1:

Growth rates of tropical birds

Question 3.2.2 Bill wants to model and investigate the growth

rates of tropical birds. In each of the following, is he acting more as

a scientist or as a mathematician (or are they the same thing)?

(a) Bill chooses a particular species of North-Queensland bird, the

Yellow-bellied Sunbird Nectarinia jugularis, and decides to pre-

dict the expected sizes of hatchlings at various times. In order

to identify impacts of various factors on growth rates, he needs

a more precise description of the size than words like “small”,

“medium”,“big”, “bigger”, “huge”, “gigantic” or “gargantuan”.

(commons.wikimedia.org/wiki/File:Nectarinia jugularis.jpg)

(b) Bill visits a number of nests between 6:30 am and 10 am each day

for 14 days, weighs individually marked nestlings on an Ohaus

triple beam balance (accurate to 0.1 g) and records the weights.

(c) Bill calculates the mean and standard deviation of the weights

of the nestlings each day.

continued...
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Growth rates of tropical birds (continued)

Question 3.2.2 (continued)

(d) The data show that when sunbirds hatch, they:

– typically weigh around 0.92 ± 0.13 g;

– initially grow by about 0.62 g per day;

– have a rate of growth which generally increases for a few days,

but then total weight starts to level off; and

– ultimately weigh around 8.92± 1.14 g (males) or 8.12± 1.11 g

(females) as adults.

(e) Bill plots the average measured weights on a graph, as follows.
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(f) Bill has read many research papers on the growth rates of birds.

For example, in a papera it was shown that the weights of most

growing perching birds (passerines) follows the logistic curve,

which is a curve with an elongated “S” shape.

continued...

aRicklefs, Patterns of growth in birds, Ibis 110 (1968) 421–451
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Growth rates of tropical birds (continued)

Question 3.2.2 (continued)

(g) The equation for the logistic curve is well-known, and previous

researchers have shown how to use statistics to calculate the

values for constants in the equation. Bill finds that a good model

of the weight W (in g) of nestling sunbirds t days after birth is:

W =
8.6

1 + e−0.37(t−5.8)
.

(h) Bill plots this equation and his data on a graph.
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(i) Bill uses his model to show that (on average) sunbirds grow 25%

more slowly than comparable species from Brazil.

• The above results and procedures are factual. All data, descriptions

and equations were taken from a papera. The author was a biologist

from the University of Saskatchewan, Canada.

Science and mathematics are not separate areas, with math-

ematics artificial or irrelevant. Instead, they are often so

closely interlinked that they are identical!

End of Case Study 1.
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3.3 Developing models

• All models are a trade-off between accuracy and complexity (and

hence cost in terms of time, computational power and/or money).

greggsutter.com/mt/archives/manWomanControlPanel.jpg

• When developing a model it is important to identify which

physical factors and data are crucial, and what levels of accuracy

and precision are required.

Case Study 2:

Modelling fluid flow
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Modelling fluid flow (continued)

• Fluid dynamics involves studying liquids and gases that are moving.

This is important in many branches of science (particularly geology,

environmental science and biomedical science) and engineering.

• There are various models in fluid dynamics, depending on the indi-

vidual characteristics of the fluid and the nature of its movement.

Question 3.3.1 Develop a model of the flow rate of blood through

a given blood vessel. (Hint: start by deciding which factors are

important and whether they increase or decrease the flow rate.)

The following formula (called the Hagen-Poiseuille equation) is often used
to estimate such flows:

Comment on the formula:

End of Case Study 2.
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3.4 Models in action

Case Study 3:

Modelling the risk of heart disease

Age-specific prevalence of coronary heart disease, Australia, 2004-05

Top ten causes of death (QLD, 2005) Number percent
Diseases of the circulatory system 8479 36%
(including ischaemic heart disease, stroke)

Neoplasms (cancer) 7148 30%
Diseases of the respiratory system 1963 8%
External causes (suicide, accidents, falls) 1556 7%
Endocrine, nutritional and metabolic diseases 917 4%
Diseases of the digestive system 803 3%
Diseases of the nervous system 750 3%
Diseases of the genitourinary system 508 2%
Mental and behavioural disorders 481 2%
Infectious and parasitic diseases 239 1%

Total all causes 23584 −
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Modelling the risk of heart disease (continued)

• Individuals, doctors and public health bodies all have an obvious

interest in predicting who is at risk of suffering Cardiovascular

Disease (CVD).

• The risk of suffering a certain medical event is often specified as a

probability of the event occurring in a given time period.

Question 3.4.1 Shortly we will encounter a famous study into car-

diovascular health, called the Framingham study. This study defines

Coronary Heart Disease (CHD) as including:

• angina pectoris, which is severe chest pain caused by a lack of

blood to heart muscle;

• myocardial infarction, commonly called a heart attack, arising

from complete loss of blood supply to heart muscle; and

• death due to cardiac arrest.

When developing a model that allows estimation of the percentage

likelihood that Peter will suffer CHD in the next 10 years, what

information might be required and which factors are likely to be

crucial? What is your “gut feeling” of his likelihood?
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Modelling the risk of heart disease (continued)

• The Framingham study has identified a number of risk factors for

CHD, which have been included in a mathematical model for risk

prediction. (We will see the specific equation on Page 60.)

• One of the key risk factors is associated with levels of different

types of cholesterol in the blood.

Extension 3.4.2 (From www.csiro.au/resources/CholesterolFacts.html)

“Cholesterol is an essential type of fat that is carried in the

blood. All cells in the body need cholesterol for internal and

external membranes, and it is also needed to produce some hor-

mones. High levels of cholesterol in the blood stream are a risk

factor for coronary artery disease.

If your cholesterol level is 6.5 mmol/L or greater your risk of

heart disease is about 4 times greater than that of a person with

a cholesterol level of 4 mmol/L.

Cholesterol is carried in the blood stream in particles called

lipoproteins. These are named according to how big they are:

• the very large particles are called Very Low Density Lipopro-

teins (VLDL)

• the intermediate size ones are called Low Density Lipopro-

tein (LDL) and these particles cause heart disease

• the smallest particles are called High Density Lipoproteins

(HDL) and these particles protect against heart disease.”

• Rather than simply measuring total cholesterol T , it is increasingly

common for blood tests to measure the ratio of T to HDL.

• It is now widely accepted that the value of this ratio is a more

accurate predictor of risk of suffering coronary artery disease than

is the total cholesterol level (lower values have lower risks).

• Australian Heart Foundation guidelines suggest that for good

health, the value of this ratio should be at most 4.
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Modelling the risk of heart disease (continued)

• Until comparatively recently, little was known about the gen-

eral causes of heart disease and stroke, although the rates of

cardiovascular disease (CVD) had been rising for some time.

• In 1948, an ongoing study into heart disease was commenced

in Framingham, Massachusetts. This has become one of the

best-known longitudinal health studies.

• This study has monitored the cardiovascular health of the partici-

pants and identified a range of risk factors.

Extension 3.4.3 (From www.nhlbi.nih.gov)

“Since its inception, the study has produced approximately 1,200

articles in leading medical journals. The concept of CVD risk

factors has become an integral part of the modern medical cur-

riculum and has led to the development of effective treatment

and preventive strategies in clinical practice.”

Extension 3.4.4 (From www.framinghamheartstudy.org)

“Since our beginning in 1948, the Framingham Heart Study, un-

der the direction of the National Heart, Lung and Blood Institute

(NHLBI), formerly known as the National Heart Institute, has

been committed to identifying the common factors or character-

istics that contribute to cardiovascular disease (CVD). We have

followed CVD development over a long period of time in three

generations of participants.

Our Study began in 1948 by recruiting an Original Cohort of

5,209 men and women between the ages of 30 and 62 from the

town of Framingham, Massachusetts, who had not yet developed

overt symptoms of cardiovascular disease or suffered a heart at-

tack or stroke. Since that time the Study has added an Offspring

Cohort in 1971, the Omni Cohort in 1994, a Third Generation

Cohort in 2002, a New Offspring Spouse Cohort in 2003, and a

Second Generation Omni Cohort in 2003.”
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Modelling the risk of heart disease (continued)

Extension 3.4.5 (From www.framinghamheartstudy.org)
“Over the years, careful monitoring of the Framingham Study popu-
lation has led to the identification of major CVD risk factors, as well
as valuable information on the effects of these factors such as blood
pressure, blood triglyceride and cholesterol levels, age, gender, and
psychosocial issues. Risk factors for other physiological conditions
such as dementia have been and continue to be investigated....
Research milestones from the study include:

• 1960: Cigarette smoking found to increase the risk of heart disease

• 1961: Cholesterol level, blood pressure, and electrocardiogram abnor-
malities found to increase the risk of heart disease

• 1967: Physical activity found to reduce the risk of heart disease and
obesity to increase the risk of heart disease

• 1970: High blood pressure found to increase the risk of stroke

• 1976: Menopause found to increase the risk of heart disease

• 1978: Psychosocial factors found to affect heart disease

• 1988: High levels of HDL cholesterol found to reduce risk of death

• 1994: Enlarged left ventricle (one of two lower chambers of the heart)
shown to increase the risk of stroke

• 1996: Progression from hypertension to heart failure described

• 1998: Development of simple coronary disease prediction algorithm in-
volving risk factor categories to allow physicians to predict multivariate
coronary heart disease risk in patients without overt CVD

• 1999: Lifetime risk at age 40 years of developing coronary heart disease
is one in two for men and one in three for women

• 2001: High-normal blood pressure is associated with an increased risk
of cardiovascular disease, emphasising the need to determine whether
lowering high-normal blood pressure can reduce the risk of CVD.

• 2002: Lifetime risk of developing high blood pressure in middle-aged
adults is 9 in 10.

• 2002: Obesity is a risk factor for heart failure.

• 2004: Serum aldosterone levels predict future risk of hypertension in
non-hypertensive individuals.

• 2005: Lifetime risk of becoming overweight exceeds 70 percent, that
for obesity approximates 1 in 2.”
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Modelling the risk of heart disease (continued)

• One of the resources produced from the Framingham Study is a

Coronary Heart Disease Risk Prediction score sheet, which is a

table-based representation of the model they derived.

Question 3.4.6 Estimate the probability that Peter will suffer

CHD within 10 years. Compare with your answer to Question 3.4.1.

Coronary Disease Risk Prediction Score Sheet for Men Based on LDL Cholesterol Level

Step 1 Step 7 (sum from steps 1-6)
Age Adding up the points

Years Points Age ________
30-34 -1
35-39 0 LDL Cholesterol ________
40-44 1
45-49 2 HDL Cholesterol ________
50-54 3
55-59 4 Blood Pressure ________
60-64 5
65-69 6 Diabetes ________
70-74 7

Smoker ________

Step 2 Point Total ________
LDL - Cholesterol Key

(mg/dl) (mmol/L) Points Color Risk

<100 <2.59 -3 green Very low

100-129 2.60-3.36 0 white Low Step 8 (determine CHD risk from point total)
130-159 3.37-4.14 0 yellow Moderate CHD Risk
160-189 4.15-4.91 1 rose High Point 10 Yr

>190 >4.92 2 red Very high Total CHD Risk
<-3 1%
-2 2%

Step 3 -1 2%
HDL - Cholesterol 0 3%

(mg/dl) (mmol/L) Points 1 4%
<35 <0.90 2 2 4%

35-44 0.91-1.16 1 3 6%
45-49 1.17-1.29 0 4 7%
50-59 1.30-1.55 0 5 9%
>60 >1.56 -1 6 11%

7 14%
8 18%

Step 4 9 22%
Blood Pressure 10 27%

Systolic Diastolic (mmHg) 11 33%
(mmHg) <80 80-84 85-89 90-99 >100 12 40%

<120 0 13 47%
120-129 0 pts >14 >56%
130-139 1
140-159 2

>160 3 pts Step 9 (compare to man of the same age)
Note: When systolic and diastolic pressures provide different  Comparative Risk
estimates for point scores, use the higher number Age Average Low*

(years) 10 Yr CHD 10 Yr CHD
Risk Risk

Step 5 30-34 3% 2%
Diabetes 35-39 5% 3%

Points 40-44 7% 4%
No 0 45-49 11% 4%
Yes 2 50-54 14% 6%

55-59 16% 7%
60-64 21% 9%

Step 6 65-69 25% 11%
Smoker 70-74 30% 14%

Points
No 0 *Low risk was calculated for a man the same age,
Yes 2 normal blood pressure, LDL cholesterol 100-129 mg/dL,

HDL cholesterol 45 mg/dL, non-smoker, no diabetes
Risk estimates were derived from the experience of
the NHLBI's Framingham Heart Study, a predominantly 
Caucasian population in Massachusetts, USA
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Modelling the risk of heart disease (continued)

For comparison with CHD risk for males, the risk sheet for females is:

Coronary Disease Risk Prediction Score Sheet for Women Based on LDL Cholesterol Level

Step 1 Step 7 (sum from steps 1-6)
Age Adding up the points

Years Points Age ________
30-34 -9
35-39 -4 LDL Cholesterol ________
40-44 0
45-49 3 HDL Cholesterol ________
50-54 6
55-59 7 Blood Pressure ________
60-64 8
65-69 8 Diabetes ________
70-74 8

Smoker ________

Step 2 Point Total ________
LDL - Cholesterol Key

(mg/dl) (mmol/L) Points Color Risk

<100 <2.59 -2 green Very low

100-129 2.60-3.36 0 white Low Step 8 (determine CHD risk from point total)
130-159 3.37-4.14 0 yellow Moderate CHD Risk
160-189 4.15-4.91 2 rose High Point 10 Yr

>190 >4.92 2 red Very high Total CHD Risk
<-2 1%
-1 2%

Step 3 0 2%
HDL - Cholesterol 1 2%

(mg/dl) (mmol/L) Points 2 3%
<35 <0.90 5 3 3%

35-44 0.91-1.16 2 4 4%
45-49 1.17-1.29 1 5 5%
50-59 1.30-1.55 0 6 6%
>60 >1.56 -2 7 7%

8 8%
9 9%

Step 4 10 11%
Blood Pressure 11 13%

Systolic Diastolic (mmHg) 12 15%
(mmHg) <80 80-84 85-89 90-99 >100 13 17%

<120  -3 pts 14 20%
120-129 0 pts 15 24%
130-139 0 pts 16 27%
140-159 2 pts >17 >32%

>160 3 pts
Note: When systolic and diastolic pressures provide different
estimates for point scores, use the higher number Step 9 (compare to women of the same age)

 Comparative Risk
Age Average Low*

Step 5 (years) 10 Yr CHD 10 Yr CHD
Diabetes Risk Risk

Points 30-34 <1% <1%
No 0 35-39 1% <1%
Yes 4 40-44 2% 2%

45-49 5% 3%
50-54 8% 5%

Step 6 55-59 12% 7%
Smoker 60-64 12% 8%

Points 65-69 13% 8%
No 0 70-74 14% 8%
Yes 2

*Low risk was calculated for a woman the same age, 
Risk estimates were derived from the experience of normal blood pressure, LDL cholesterol 100-129 mg/dL,
the NHLBI's Framingham Heart Study, a predominantly HDL cholesterol 55 mg/dL, non-smoker, no diabetes
Caucasian population in Massachusetts, USA

(Both risk sheets can be found at:
www.nhlbi.nih.gov/about/framingham/riskabs.htm)
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Modelling the risk of heart disease (continued)

Question 3.4.7 Briefly discuss some of the key points highlighted

by the two coronary disease risk prediction sheets. (You may like

to mention such things as the comparative impact of different risk

factors, some ‘risk factors’ commonly mentioned in the media which

are not included, and some differences between males and females.)
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Modelling the risk of heart disease (continued)

Extension 3.4.8 (From Brindle et al., Predictive accuracy of the Fram-
ingham coronary risk score in British men: prospective cohort study, British
Medical Journal 327 (2003) 1267–1270.)

The Framingham researchers actually developed a mathematical
model of the risk (shown below). The risk ‘score’ sheets are sim-
ply approximate table-based representations of the model.

Framingham risk equations for coronary heart disease death (B1) and coronary heart 

disease events (B2) in men over 10 years  

Step 1  

For coronary heart disease mortality calculate*  

µ = 11.2889 –  0.588xln(systolic blood pressure) –  0.1367xsmoking –  0.3448xln(total/high 

density lipoprotein cholesterol) –  0.1237xelectrocardiographic left ventricular hypertrophy –  

0.944xln(age) –  0.0474xdiabetes  

= exp(2.9851 –  0.9142µ)                                         (B1)  

 

For coronary heart disease events calculate*  

µ = 15.5303 –  0.9119xln(systolic blood pressure) –  0.2767xsmoking –  0.7181xln(total/high 

density lipoprotein cholesterol) –  0.5865xelectrocardiographic left ventricular hypertrophy –  

1.4792xln(age) –  0.1759xdiabetes  

= exp( – 0.3155  –   0.2784x(µ –  4.4181))                  (B2)  

 

Step 2  

For both equations calculate:  

u = (ln(10) –  µ)/                                                   Length of follow up = 10 years  

Step 3  

The predicted probability is then given by:  

p=1 –   exp(– exp(u))  

*Variables smoking, electrocardiographic left ventricular hypertrophy, and diabetes are set to 1 

when present and 0 when absent. Systolic blood pressure measured in mm Hg and age in years 
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Modelling the risk of heart disease (continued)

Question 3.4.9 When Peter underwent a blood test in August

2008, his total cholesterol was 4.7 mmol/L, with his HDL 0.9 mmol/L

and his LDL 3.5 mmol/L. Medical advice was that he should try to

raise his HDL level through lifestyle changes, including increased ex-

ercise, changed diet, less stress and giving fewer SCIE1000 lectures.

Assuming his lifestyle changes only have an impact on his HDL (so

his other cholesterol levels remain unchanged), by what percent does

Peter need to increase his HDL so that his ratio of total cholesterol

to HDL equals 4?
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Modelling the risk of heart disease (continued)

• High levels of LDL cholesterol in the blood can lead to blockages

in coronary arteries. One surgical method of increasing blood flow

through partially blocked arteries is an angioplasty.

• In a coronary angioplasty, a balloon-tipped catheter is inserted

into the body under local anaesthetic, typically through the groin

or above the wrist. When in position in the coronary artery, the

balloon is inflated to expand the blood vessel (and sometimes a

metallic stent is inserted to maintain the expansion).

• An advantage of angioplasties over coronary artery bypass surgery

is that the procedure is much simpler and less invasive, but

a disadvantage is a higher rate of recurrence of the original

occlusion.

(‘LAD’ is the left
anterior descending
coronary artery)

cardiophile.org/wp-content/uploads/2008/10/lad-total-occulusion.jpg
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Modelling the risk of heart disease (continued)

Question 3.4.10 In an angioplasty operation, a patient has a 30%

increase in the diameter of a partially occluded artery.

(a) Roughly estimate the resulting increase in blood flow through

that artery.

(b) Explain how to calculate the increase more accurately, and do

so.

End of Case Study 3.
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3.5 Computer models

• Computation is important when formulating and applying models,

particularly when dealing with complex phenomena.

• You almost certainly have already used computer models at some

time, and may even have developed some of your own.

• Every computer program and computer model must be imple-

mented in some computer language.

• A computer language is a collection of commands that can be

interpreted by a computer, and instructs the computer to perform

associated operations and calculations.

• There are many different computer languages, each suited to

particular uses. In this course we use the language Python.

• We use Python because it is modern, freely

available, fairly easy to learn, used in real

science applications, and illustrates many im-

portant general computing concepts.

• (For interest, Python was named after Monty

Python’s Flying Circus.)

• Some well-known users of Python include Youtube, Google,

Yahoo!, CERN and NASA.�

�

�

�

Python in this course

You will encounter Python in this course in the following ways:

• These lecture notes include some examples of Python programs

and the output.

• You have a separate Python programming manual.

• You will write small Python programs in your computer lab

classes and submit some of them for assessment.

You will not need to write programs in your exam. However, you

will need to answer questions on general computing concepts, and

also explain what given Python programs do.
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Python Example 3.5.1

Python examples appear in the notes like this.

1 # This is a comment.

2 print 6+4

3 print "Hello world!"

Note that

• The lines of Python code have a vertical line next to them and

are numbered for ease of reference.

• The output from the above program is:

1 10

2 Hello world!

• The first step in writing a program (in Python or any language)

is to specify exactly what the program should do: specifications

should be precise, accurate and complete.

• The next step is to write the program; we study this in Chapter 7.

• In the next case study we will develop a mathematical model, and

then give a computer representation of that model.

Case Study 4:

Blood Alcohol Concentration

• Blood Alcohol Concentration (BAC) is usually measured as the

percentage of total blood volume which is alcohol.

• The following table shows some of the effects typically experienced

at differing BACs.
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Blood Alcohol Concentration (continued)

BAC (%) Changes in Feelings/Personality Physical/Mental Impairments
0.01− 0.06 Relaxation Thought

Sense of Well-being Judgement
Loss of Inhibition Coordination
Lowered Alertness Concentration
Joyous

0.06− 0.10 Blunted Feelings Reflexes
Dis-inhibition Reasoning
Extroversion Depth Perception
Impaired Sexual Pleasure Distance Acuity

Peripheral Vision
Glare Recovery

0.11− 0.20 Over-Expression Reaction Time
Emotional Swings Gross Motor Control
Angry or Sad Staggering
Boisterous Slurred Speech

0.21− 0.29 Stupor Severe Motor Impairment
Lose Understanding Loss of Consciousness
Impaired Sensations Memory Blackout

0.30− 0.39 Severe Depression Bladder Function
Unconsciousness Breathing
Death Possible Heart Rate

≥ 0.40 Unconsciousness Breathing
Death Heart Rate

(source: www.alcohol.vt.edu/Students/alcoholEffects/index.htm)

• Given these effects of alcohol, there are strict laws about driving

and operating machinery after consuming alcohol.

• In Australia the maximum legal blood alcohol content for driving

is 0.05%, or 0.5 g/L.

• It is important to be able to estimate the time taken for BAC to

return to 0.

• This will vary somewhat between individuals, but governments

and health bodies publish general guidelines.
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Blood Alcohol Concentration (continued)

Question 3.5.2 The following table estimates the number of hours

required for the BAC of males of different weights to return to zero.

(This is taken from an American government website; to approxi-

mately convert a weight from pounds to kg, divide by 2.2.)

num. Weight (pounds)

drinks 120 140 160 180 200 220 240 260

1 2 2 2 1.5 1 1 1 1

2 4 3.5 3 3 2.5 2 2 2

3 6 5 4.5 4 3.5 3.5 3 3

4 8 7 6 5.5 5 4.5 4 3.5

5 10 8.5 7.5 6.5 6 5.5 5 4.5

Derive a mathematical model for this data.

• This mathematical model can be implemented as a computer

model.

Program specifications: Use the mathematical model to write a

program which allows the user to:

(a) enter the weight of a male and a number of standard drinks, and

calculates the approximate time for BAC to return to 0; and

(b) obtain an approximation to the given table of times.
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Blood Alcohol Concentration (continued)

Python Example 3.5.3

1 # A program to model the time for BAC to return to 0

2 # for male drinkers of different weights.

3

4 from __future__ import division

5 from pylab import *

6

7 choice = input("Type 1 to enter a man’s details or 2 for

8 the modelled table: ")

9

10 if choice == 1:

11 # Individual calculations

12 weight = input("What is the man’s weight in pounds? ")

13 numDrinks = input("How many standard drinks does he have? ")

14 approx = numDrinks * 240 / weight

15 time = round(approx,1)

16 print "His BAC should be 0 after about ",time," hours."

17 else:

18 # Table calculations

19 print " ",

20 for weight in arange(120,280,20):

21 print weight," ",

22 print

23 print "------------------------------------------"

24

25 # Loop through the numbers of drinks and the weights.

26 for numDrinks in arange(1,6):

27 print numDrinks,"|",

28 for weight in arange(120,280,20):

29 time = numDrinks * 240 / weight

30 print round(time,1)," ",

31 print
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Blood Alcohol Concentration (continued)

Python Example 3.5.3 (continued)

Here is the output from running the above program twice:

1 Type 1 to enter a man’s details or 2 for the modelled table: 1

2 What is the man’s weight in pounds? 150

3 How many standard drinks does he have? 9

4 His BAC should be 0 after about 14.0 hours.

5

6 Type 1 to enter a man’s details or 2 for the modelled table: 2

7 120 140 160 180 200 220 240 260

8 ----------------------------------------------------------

9 1 | 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9

10 2 | 4.0 3.4 3.0 2.7 2.4 2.2 2.0 1.8

11 3 | 6.0 5.1 4.5 4.0 3.6 3.3 3.0 2.8

12 4 | 8.0 6.9 6.0 5.3 4.8 4.4 4.0 3.7

13 5 | 10.0 8.6 7.5 6.7 6.0 5.5 5.0 4.6

Question 3.5.4 Briefly discuss the effectiveness and accuracy of

the mathematical model.

End of Case Study 4.

SCIE1000, Section 3.5. Case Study 4: Blood Alcohol Concentration Page 69



3.6 Space for additional notes
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4 Some science

I see skies of blue, clouds of white
Bright blessed days, dark sacred nights
And I think to myself, what a wonderful world.
I hear babies cry, I watch them grow
They’ll learn much more, than I’ll never know
And I think to myself, what a wonderful world
Yes I think to myself, what a wonderful world

Artist: Louis Armstrong

(www.youtube.com/watch?v=fo-VDRvABkw)
(Take time to watch this.)

The Astronomer (1668), Jan Vermeer (1632 – 1675), Musee du Louvre, Paris.
(Image source: en.wikipedia.org)

SCIE1000, Section 4.0. Page 71



Introduction

Two of the goals of this course are to:

• demonstrate the importance of quantitative skills (including mathe-
matics and computing) in science; and

• explore a breadth of scientific fields, showing some similarities and
relationships between the diverse fields.

The examples and case studies have been deliberately chosen to represent
different scientific disciplines, and in most cases no particular background
knowledge is required to understand the content. However, some examples
may require some knowledge of specific words or concepts.

This section of the notes is a very quick introduction to some fundamental
concepts in physics, chemistry and biology. Of course, each of these areas
represents a rich and extensive branch of human knowledge. All students
enrolled in this course will be undertaking substantial studies in one or
more of these areas, so the material in this section is designed primarily for
those who have never studied a particular discipline before. Of necessity,
the content here is very limited.

Some of the examples/contexts we will discuss are:

• Physics.

• Chemistry.

• Biology.

Specific techniques and concepts we will cover include:

• SI units.

• Dimensional analysis.

• Writing and solving equations.
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4.1 Numbers and units�

�

�

�

Some notation regarding numbers

You may see numbers written in scientific notation, which is in

the form a× 10b, where a and b are numbers.

Computers and calculators often write numbers in scientific notation

using “E” or “e” notation. Python uses the notation ae+b or ae-b.

For example, Python would print 3× 1017 as 3e+017.

(Much of the following is sourced from the US National Institute of
Standards, see physics.nist.gov/cuu/Units/index.html.)

• When measuring a physical quantity, modelling some phenomenon

or communicating a result, it is essential to use a standard unit of

measurement.

• There are famous examples of disasters arising from inconsistent

use of units.

Example 4.1.1 The Mars Climate Orbiter was launched in 1998

as part of a $USD330 million project. In September 1999 the orbiter

crashed into Mars.

It later transpired that the crash was caused by an inconsistency

between units in the associated software.

One team of programmers had assumed a value was specified in

imperial units, and another team assumed it was in metric.

• The most commonly used units of measurement are defined by the

International System of units, and are called SI units.

• There are seven SI base units; each has a standard name and

symbol.
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�

�

�

�

SI units

The names and symbols of the seven SI base units are:

Base SI base SI base

quantity unit name unit symbol

length metre m

mass kilogram kg

time second s

electric current ampere A

thermodynamic temperature kelvin K

amount of substance mole mol

luminous intensity candela cd�




�

	

SI prefixes

The 20 SI prefixes used to denote multiples of the SI units are as

follows (each is a positive or negative power of 10).

Multiple Name Symbol Multiple Name Symbol

101 deka da 10−1 deci d

102 hecto h 10−2 centi c

103 kilo k 10−3 milli m

106 mega M 10−6 micro µ

109 giga G 10−9 nano n

1012 tera T 10−12 pico p

1015 peta P 10−15 femto f

1018 exa E 10−18 atto a

1021 zetta Z 10−21 zepto z

1024 yotta Y 10−24 yocto y

Example 4.1.2 Some examples of using SI prefixes include:

• The SI base unit kilogram, denoted kg, is unusual because it already
includes a prefix.

• One kilometre, denoted 1 km, is 103 m.

• A nanosecond, denoted 1 ns, is 10−9 s.
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Derived units

Many natural and scientific quantities require more complex units

than SI base units. These more complex units can always be defined

in terms of the seven base units, and are called SI derived units.

Example 4.1.3 Some examples of quantities with SI derived units

are:

• Volume, measured in cubic metres;

• Velocity, measured in metres per second;

• Concentration, measured in moles per cubic metre.

(In practice, concentration is often expressed as moles per litre.

A litre is defined to be 1/1000 of a cubic metre, and is denoted

L.)

• SI derived units can become lengthy to write, so it is usual to

adopt a convenient mathematical shorthand.�

�

�

�

Standard mathematical notation for SI derived units

Standard mathematical notation for SI derived units is based on the

following principles:

• if the quantity involves the “product” of two SI units then their

SI symbols are separated by a space or a dot;

• mathematical power notation is used if the same SI unit occurs

in a “product” more than once; and

• if the quantity involves the “quotient” of an SI unit then the

derived unit either uses a quotient sign /, or (more often) math-

ematical power notation with a negative power.
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Example 4.1.4 The quantities from Example 4.1.3 rewritten with

mathematical notation in their standard units are:

• Volume, measured in m3 (or L, where 1 L is defined to be

10−3 m3).

• Velocity, measured in m/s or m s−1 or m · s−1.

• Concentration, measured in mol/L or mol L−1 or mol · L−1.

Example 4.1.5 Some SI derived units are used very frequently,

so they have been given special names and symbols. The following

table shows some well-known examples.

Quantity Name Symbol SI units SI base units

frequency hertz Hz - s−1

force newton N - m · kg · s−2

pressure, stress pascal Pa N · m−2 m−1 · kg · s−2

energy, work, quantity of heat joule J N · m m2 · kg · s−2

power, radiant flux watt W J · s−1 m2 · kg · s−3

quantity of electricity,

electric charge coulomb C - s · A

electric potential difference,

electromotive force volt V W · A−1 m2 · kg · s−3 · A−1

capacitance farad F C · V−1 m−2 · kg−1 · s4 · A2

electric resistance ohm Ω V · A−1 m2 · kg · s−3 · A−2

Celsius temperature degree ◦ C - K

Celsius

Example 4.1.6 The average daily energy intake of a reasonably

active adult human male is around 107 J or 10 megajoules, written

10 MJ.
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Dimensional analysis

A useful technique in science is dimensional analysis, which is

closely related to SI units. A full discussion of dimensional analysis

is beyond this course, but some useful points are:

• Any equation describing a physical situation can only be true if

it is dimensionally homogeneous; that is, both sides of the

equation must have the same units.

• Units can be mathematically manipulated, including multiplied

and cancelled.

• Quantities can be added or subtracted if and only if they have

the same units.

Dimensional analysis can very quickly give a rough check of whether

a calculation is ‘plausible’: if the dimensions do not match, then

there must be an error.�




�

	

The importance of units

Every physical quantity must have units unless it is a pure number

(such as 2 or π). Every length must be measured in m, km, inches,

furlongs, or some other unit of length. So if x = 3 m then x is a

length, but if y = 3 then y is just a number. These two things

are different.

In scientific work, you should try to keep units on quantities. Some-

times when you are learning new mathematical concepts it can make

things seem more complicated or harder to read if units are included.

To keep things simpler in these notes, we have often defined vari-

ables to not require units. For example, if t is defined by saying “t

is the time since the rocket was launched” then t needs a unit. If it

is defined by saying “t is the number of seconds since the rocket was

launched,” it does not. We often use the latter terminology.
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4.2 Science

The word science derives from the Latin scientia, meaning knowledge. In
an historical sense, it refers to any systematic knowledge or practice. The
modern use of the term refers to a system of acquiring knowledge based on
the scientific method, as well as to the organised body of knowledge gained
through such research.

Fields of science are commonly classified into natural sciences (which
study natural phenomena) and social sciences (which study human
behaviour and societies). These are both empirical sciences, which means
the knowledge must be based on observable phenomena and capable of being
tested for validity by other researchers working under the same conditions.

Mathematics, which is sometimes classified within a third group of science
called formal science, has both similarities and differences with the natural
and social sciences. It is similar to empirical sciences in that it involves
an objective, careful and systematic study of an area of knowledge; yet it
is different because of its method of verifying its knowledge, using a priori
rather than empirical methods. Major advances in formal science have often
led to major advances in the physical and biological sciences. The formal
sciences are essential to the formation of hypotheses, theories, and laws,
both in discovering and describing how things work (natural sciences) and
how people think and act (social sciences).

The history of science is marked by a chain of advances in technology and
knowledge which have always complemented each other. Technological
innovations are bred by other discoveries, and in turn give rise to new
discoveries, inspiring new possibilities and approaches to long-standing
science issues. Investing money, time, effort and education in science and
technology is critical to ensuring long-term prosperity and a high quality of
life. Scientists are at the forefront of developing scientific and technological
innovations. Their primary objectives are to develop ideas and conduct
novel research which can be used to solve problems for the private and
public good. Although experimental science is often differentiated from
applied science, which is the application of scientific research to specific
human needs, the two are often interconnected.

Science is both content and process. It is the collection of discovered
knowledge as well as the processes used to discover knowledge. Science
should not be taught as just a series of facts, but rather by explaining how
materials were discovered and ideas developed over time. This approach
provides an integrated and holistic appreciation as well as historical and
contextual relevance for the scientific process.
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The process of observing the physical universe, framing experimental
questions (hypotheses), analysing and critically interpreting data, generating
models and making predictions is considered to constitute the scientific
method, based on hypothetico-deductive logic. This method should not
be regarded as a rigid template, but rather as a natural, circular way of
thinking, with no fixed start or end points.

The Enabling Sciences
There are many different ways to introduce fundamental and applied
sciences. Most textbooks are dedicated to specific disciplines and therefore
do not demonstrate how the sciences overlap and complement each other.
They do not provide an interdisciplinary or multidisciplinary perspective or
an integrated approach. The framework we have adopted covers the three
fundamental enabling sciences of chemistry, physics and biology; the
study of matter, energy and life.

Chemistry involves the study of matter - the atoms and molecules which
interact to produce many different compounds. Fundamental concepts
address the atomic and subatomic structure (periodic table), molecular
structure (states, bonds, mixtures), reactions (types, energetics, equilibria,
kinetics, dynamics), and analytical methods (mass spectrometry, magnetic
resonance, diffraction).
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Physics is the study of the physical universe - energy, matter, motion, time
and space. It deals with celestial bodies, earthly objects, subatomic particles
and various energy forms. Fundamental concepts address motion and force
laws (velocity, acceleration, power, electro-magnetism); conservation laws
(energy, momentum, thermodynamics); and wave laws (light, X-rays).

Biology is the study of life - the structure, function and inter-relationships
of living organisms. Despite the extraordinary diversity amongst organisms,
they show remarkable unity at the molecular and cellular levels, reflecting
their common ancestry. Fundamental concepts address molecular biology
(biochemical building blocks), cellular biology (membranes, organelles),
organismal biology (biodiversity, species richness) and environmental
biology (communities, populations, ecosystems).

These fields of study are not mutually exclusive: they exhibit manifold
inter-relationships. Scientists require an integrated knowledge of matter,
energy and life in order to understand and practice holistic science. For
example, the study of living things requires knowledge of their chemical
composition and physical surroundings. Integrated knowledge is evident
when considering some of the great fundamental and unifying themes in
science:
• Four fundamental forces hold everything together - gravity,

electromagnetism, the nuclear ‘strong’ force, and the decay ‘weak’ force
(collectively called the unified field theory).

• Energy is used to perform work - it exists in many forms, can be
converted from one form to another, and is conserved in closed systems.

• Chemicals are the building blocks of life - hydrocarbons dominate
on Earth (consistent with carbon-based life forms on a water planet).

• All life forms have a unique genetic code which undergoes
replication (essential for inheritance) and transcription and translation
(essential for protein synthesis and metabolism).

• Cells are the basic units of life - all living organisms have
microscopic membrane-bound cells containing the genetic material and
various organelles for energy transduction.

• Life-forms co-exist - populations of organisms collect together in
ecosystems where energy flows through while matter is recycled.
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4.3 Chemistry: matter and molecules

Chemistry is the science concerned with the study of matter - anything
that takes up space and has mass. Matter can exist in three different states:
solid, liquid and gas. These states have markedly different characteristics:
solids are generally denser than liquids, which in turn are denser than gases;
solids have a fixed shape while liquids and gases do not; and solids and
liquids have a fixed volume while gases do not. The relationship between
density ρ, mass m and volume v is given by ρ = m/v (with appropriate
units).

All matter is composed of atoms which have a central nucleus (containing
protons and neutrons) surrounded by electrons. The atoms of every element
have a characteristic number of protons, given as the atomic number (shown
as a superscript in the periodic table). Every atom also has mass, measured
in atomic mass units (amu) (shown as a subscript in the periodic table).

Atomic mass units have been scaled against the carbon-12 (C-12) atom
(which was arbitrarily selected as a common solid stable element on Earth),
whereby 1 amu equals 1/12 of the mass of a carbon-12 atom. That is,
1 amu = 1.66 × 10−24 g. When this definition is reversed, we obtain
1 g = 6.022× 1023 amu. As 1 amu = 1/12 of the mass of a carbon-12 atom,
the number of atoms in 1 g of carbon-12 = 1/12 × (6.022 × 1023) atoms.
This means 12 g of carbon-12 contains 6.022× 1023 atoms.
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Moles
The SI unit for the amount of a substance is the mole (mol), which is defined
as the amount of substance that contains the same number of specified
entities as there are atoms in 12 g of carbon-12; that is, 6.022× 1023. This
is called Avogadro’s number; 1 mole of any substance contains this many
entities. For example:

• one mole of lead (Pb) contains 6.022× 1023 atoms of Pb; and

• one mole of carbon dioxide (CO2) contains 6.022 × 1023 molecules of
CO2.

Obviously, the atomic masses of all these substances differ, but 1 mole of
each contains the same number of entities (atoms or molecules). While this
may appear cumbersome, it actually allows very simple calculations to be
performed without having to revert to complex base units.

Moles can be converted to mass, and vice versa, using their relationship
with molar mass (also called molecular mass, formula mass, and sometimes
molecular weight). The molar mass of a substance is derived from its
chemical formula and it equals the combined mass of all the constituent
atoms. For example, the molecular formula for ethylene is C2H4, comprising
2 carbon and 4 hydrogen atoms. According to the periodic table, carbon
atoms have an atomic mass of 12.01 g/mol and hydrogen atoms have an
atomic mass of 1.008 g/mol, so the molar mass of ethylene equals

(2× 12.01) + (4× 1.008) = 28.05 g/mol.

Thus, 1 mole of ethylene weighs 28.05 g. The relationship between number
of moles n, mass m and molar mass M , is given by:

molar mass (g/mol) = mass (g) / amount (mol) (M = m/n)

Molarity (or molar concentration) is the unit of concentration used for
aqueous solutions. It denotes the amount of substance in a particular
volume of solution, expressed as the number of moles of solute per litre
of solution (mol/L). For example, a one-molar (1 M) solution of sucrose
(C12H22O11, molar mass 342.3 g/mol) consists of 342.3 grams of sucrose
dissolved in enough water to bring the final total volume to 1 litre. It is
often convenient to think of molarity in terms of grams per litre (g/L) where
the molar mass of a chemical (g/mol) gives the number of grams required
in 1 litre of solution to give a 1 M solution. The formula for molarity is:

molarity (mol/L) = amount (mol) / volume (L) (c = n/v)
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We can summarise the relationships between quantity, volume and mass as
follows:

By knowing the values for some of these quantities, we can calculate missing
values by simple algebraic substitution within the formulae.

Radioactive decay
The periodic table lists more than 100 elements according to the number
of protons in their nuclei; for example, hydrogen has 1 proton, carbon has
6, and oxygen has 8. However, different isotopes of each element can be
produced depending on the number of neutrons present in the nucleus; for
example, ‘normal’ carbon has 6 protons and 6 neutrons (giving a total ‘mass
number’ of 12 and hence the name carbon-12) compared to carbon-14 which
has two extra neutrons.
Not all isotopes are stable; many are unstable (radioactive) and their
structure changes by various means (including neutron-proton replacement,
electron capture, alpha decay, and beta decay). While it is impossible to
predict exactly when the nucleus of an unstable isotope will change, the
statistical likelihood can be calculated and expressed as an exponential
decay rate, which gives rise to the notion of half-life. The half-life of
strontium-90 (Sr-90) is 28.9 years, that of carbon-15 (C-15) is 2.4 seconds,
and that of uranium-238 (U-238) is 4.5 billion years.

Radiological or radiometric dating is a technique which can be applied to
determine the age of a geological deposit or an archaeological find. It is
based on the rate of decay of radioactive isotopes contained within samples
of various substances. Isotopes with long half-lives are used to date rocks
and fossils of great antiquity while those with shorter half-lives are used to
date younger materials.
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Volcanic rocks often contain potassium-40 (K-40) which decays to argon-
40 (Ar-40) with a half-life of 1.25 billion years. From the moment of
formation (crystallisation/solidification of molten lava), the parent isotope
decays at a constant rate while the daughter isotope becomes trapped and
accumulates in the crystal (it is freed only when the rock sample is melted).
By determining the ratio of the two isotopes, the age of the rock can be
calculated. If there are equal amounts of potassium-40 and argon-40, half
the potassium-40 must have decayed so the age of the rock equals the
half-life of the isotope (that is, 1.25 billion years). While dateable crystals
are usually found in volcanic rock, fossils are usually found in sedimentary
rocks. Fossils are therefore often dated indirectly by dating the volcanic
rocks that sandwich their strata. Other isotopes used to date rocks include
uranium-238 (U-238; half-life of 4.5 billion years) and rubidium-87 (Rb-87;
half-life of 49 billion years).

Carbon dating has frequently been used to estimate the ages of many
organic relics of human civilisations (such as wooden items, clothing and
tools) as well as fragments of biological specimens that are not fossilised
(such as bones, hair and teeth). The technique has gained certain notoriety
in television dramas about archaeology and forensics, and on shows devoted
to investigating scientific ‘myths’. The age of organic remains is calculated
by comparing the ratio of carbon-14 to carbon-12 in the remains with the
ratio in contemporary samples. Living organisms constantly take up carbon
from their environments and use it as chemical building blocks. Plants take
up carbon from the atmosphere for photosynthesis and animals ingest it as
part of their food web. Most carbon consists of the stable isotope carbon-12
but a small amount consists of the unstable isotope carbon-14 which decays
with a half-life of 5,730 years. When plants and animals die, they no longer
take up fresh supplies of carbon. The amount of carbon-12 in the dead
tissues will remain constant while the amount of carbon-14 will decline.
Objects more than 50,000 years old, however, have too little carbon-14 left
to measure accurately, so this dating scheme cannot be used to date older
objects.
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1

Matter

anything that takes up space and has mass

central nucleus (positive protons, neutral neutrons)

orbiting cloud (negative electrons)

atomic composition

Periodic Table

atomic mass (protons + neutrons)

atomic number (# protons)

12

6
C

Formula(e) + dimensional analysis

n
amount

(mol)      

m
mass

(g)    

v
volume

(mL)      


density

(g/mL)      

 = m/v

M
molar mass

(g/mol)          

M = m/n

Molarity c (mol/L) 

c = n/v

Radioactive isotopes

RADIANT ENERGY

isotopes (altered composition), heavier isotopes unstable,

spontaneously decay, emitting radioactivity:

• alpha () particles (2p+2n packets)

• beta () particles (electron-like)

• gamma () particles (electromagnetic energy)

Half-Life
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Question 4.3.1 The label of a bottle of a chemical such as concen-

trated hydrochloric acid (HCl) provides information relating to the

contents, including the:

• molar mass of HCl, in g/mol (also called the molecular mass or

the obsolete term molecular weight);

• density of the solution, in g/mL; and

• concentration of HCl in the solution, as a % weight/weight.

Laboratories often require solutions of a particular molarity (mol/L)

so it is necessary to do a conversion from one unit (%) to another

(molarity).

An example of a possible label from a bottle of concentrated HCl is

shown below.

320331 Hydrochloric acid
Chem-

Corp Concentrated hydrochloric acid, 32%
Molecular Formula HCl
Molecular Weight 36.46 g/mol
Density 1.16 g/mL at 25 ◦C

Note the following formulae:

molarity c =
moles of solute n

litres of solution v

molar mass M =
mass of solute m

moles of solute n

density σ =
mass m

volume v

continued...
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Question 4.3.1 (continued) Using the above molar mass, density

and concentration information for HCl, derive an equation (including

units) to calculate the molarity of the HCl solution.
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Question 4.3.2 An inorganic chemista is preparing a solution for

an experiment. She needs 750 mL of a 10% v/v (volume per volume)

aqueous (water-based) solution of hydrochloric acid (HCl), and she

has available 450 mL of 32% v/v aqueous solution of HCl. Write in

a system of simultaneous equations the problem of calculating what

volumes of 32% HCl and distilled water she needs to mix in order to

make her required solution, then solve the equations. Ensure that

your answer includes units correctly.

athat is, her profession is inorganic chemistry. As a life form, she is organic.
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4.4 Physics: motion and energy

Physics is concerned with studying the physical universe, including energy,
matter, forces, motion, heat, light, time and space. Core fields include
astrophysics, classical mechanics, quantum mechanics, thermodynamics,
electromagnetism and relativity. Theories hold true within these fields but
sometimes not between fields. For example, classical mechanics describes
the motion of objects in everyday experience, but breaks down at the
atomic scale, where it is superseded by quantum mechanics, and at speeds
approaching the speed of light, where relativistic effects become important.

Motion kinematics
Most objects move - they exhibit changes in position over time. This
includes inanimate objects (ranging in size from specks of dust to stellar
constellations) and animated life-forms (growing plants and motile animals).
Movement may be barely perceptible (growing grass), apparently rapid
(dragon-fly wingbeats), ‘non-visibly’ fast (fired bullet) or incomprehensibly
astronomical (speed of light). Mankind has observed motion throughout
history, and certain relationships have become apparent. The Italian
scientist Galileo Galilei (1564-1642) studied moving objects and conducted
a series of experiments that helped formalise our knowledge of motion into
three concepts: displacement, velocity and acceleration.

Displacement: The relative positions of two objects can be measured
using known reference points to create a scale. We commonly refer to the
interval between objects as ‘distance’, measured in SI base units metres. A
single object can also change its position or location, and we often refer to
this as the distance traveled. However, it is more accurate to use the term
displacement S, which refers to the net change in position.

Velocity: When time is taken into consideration, an object can be perceived
to have travelled a specific distance in a particular time interval. We often
refer to this as ‘speed’ and measure it as distance travelled divided by the
time taken to travel (with SI derived units metres per second). However,
scientists recognised that the direction of travel was also important, so they
incorporated this into the definition of velocity which is the displacement of
an object in a particular direction divided by the time taken.

Acceleration: When considering objects in motion, their velocity may
also change over time; this change is called acceleration, which can be
positive (increasing velocity) or negative (decreasing velocity). Acceleration
is defined as the change in velocity over time taken. Because this is a rate of
change of a rate of change, the units of acceleration are metres per second
per second, or metres per second squared (m/s2).
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Newton’s Laws
The English scientist Isaac Newton (1642–1727) synthesised the work of
Galileo and others into statements of the basic principles that govern the
motion of everything in the universe. He developed three fundamental Laws
of Motion and one Law of Universal Gravitation.

First Law of Motion: An object at rest will remain at rest, and an object
in motion will remain in motion, unless acted upon by an external force.
This law recognises that things stay the same unless something disrupts
that stasis. The tendency to stay unchanged is called inertia. It is necessary
to apply force to get a stationary object to move, or to change its motion.
This law recognises two types of motion: uniform motion (velocity), and
changing motion (acceleration). The force required to produce a change in
motion depends on the size of the object as well as its velocity. Objects are
said to possess momentum p, which is defined as:

Momentum (kg m s−1) = mass (kg) × velocity (m/s) (p = mv)

Second Law of Motion: The acceleration of an object is directly
proportional to the force applied to it, and inversely proportional to its mass.
This law extends the concept of force being necessary to change motion.
Applying force to an object causes acceleration; the greater the force, the
greater the acceleration. However, greater force is required to accelerate
larger objects because of their greater mass. These relationships are given
in the definition of force as follows (note that the units are kilogram metres
per second squared, where one kg m s−2 is called the newton, N):

Force (newtons, N) = mass (kg) × acceleration (m/s2) (F = ma)

Third Law of Motion: For every action, there is an equal and opposite
reaction. This law may be less intuitive than the others. We tend to think
of our world in terms of causes and effects rather than opposing reactions.
We think of the forceful damage done to a car when it hits a tree, rather
than the tree providing an opposing force to stop the car. Forces always
act simultaneously in pairs. Your weight is exerting a force on your chair,
while your chair is exerting an equal and opposite force to support you.
Indeed, your weight is a measure of the force required to counter-balance
the gravitational pull of the Earth on your body. At the surface of Earth,
if an object is dropped and allowed to fall freely, it will accelerate at a rate
known as the acceleration due to gravity g, with g = 9.8 m s−2.
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Newton’s Law of Universal Gravitation: The attractive force between
any two objects, called gravity, is proportional to the product of their masses
and inversely proportional to the square of the distance between them.
Gravitational forces are found throughout the universe between any two
objects:

F =
G×m1 ×m2

d2

The constant G is called the universal gravitational constant, and its units
are m3 s−2 kg−1 (or N m2 kg−2). In 1798, Henry Cavendish (1731−1810)
first measured G in an experiment where he suspended small lead balls near
large fixed lead spheres and measured the twisting force (torque) on the
suspension wire. He obtained the value for G = 6.67× 10−11 m3 s−2 kg−1.

Energy
Energy is defined as the ability to do work. It exists in several forms, as:

• potential energy (stored energy);

• kinetic energy (associated with movement);

• radiant energy (associated with light);

• thermal energy or heat (kinetic energy of atoms and molecules);

• chemical energy (stored in the bonds between atoms); and

• nuclear energy (bound within the nucleus of an atom).

Energy may be converted from one form to another, such as radiant energy
from the sun being converted to heat, and the potential energy in a battery
being converted to light in a torch. One of the most important laws of
science is the law of conservation of energy (also called the First Law of
Thermodynamics) which states that, even though energy can be converted
from one form to another, the total amount of energy in a closed system
remains constant.
Energy can be used to perform work. Muscles use chemical energy to enable
movement, and domestic appliances use electrical energy to heat water
and cook food. Work is defined as the application of energy over distance,
according to the formula:

Work (joules) = force (newtons) × distance (m) (W = Fd)
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In the metric system, force is measured in newtons (N) and work is measured
in newton metres (N m) or joules. One joule is defined as the amount of
work done when a force of one newton is exerted through a distance of one
metre.
The measurement of force conforms to Newton’s second law of motion,
which states that force is proportional to mass times acceleration:

Force (newton) = mass (kg) × acceleration (m s−2) (F = ma)

Another dimension is added to the concept of doing work (or utilising
energy) when we introduce a temporal element, that is, the time taken to
do work. The rate at which energy is used is called power, and is defined as
the amount of work done divided by time:

Power (watts) = work (joules) / time (s) (P = W/t)

In the metric system, the unit of measurement for power is the watt, named
after the inventor of the steam engine. One watt is defined as the expenditure
of one joule of energy in one second. The formula for power can be restated
as:

work, or energy (joules) = power (watts) × time (s)

This equation is used by power companies to calculate and charge for energy
consumption. They transform the units of power from watts to kilowatts
and the units of time from seconds to hours, thus deriving units of kilowatt
hours (kW h) which appear on electricity bills.
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Galileo (1564-1642)

formalized motion kinematics

distance

[displacement, S]

(m)

speed

[velocity, S /t ]

(m/s)

acceleration

[rate of  change in velocity, v /t ]

(m/s2)

Newton (1642-1727)

1. INERTIA: an object in motion will remain in motion, 

and an object at rest will stay at rest, unless acted 

upon by an external force

2. ACCELERATION: acceleration of  an object is directly 

proportional to the force applied,

and inversely proportional to its mass

3. REACTION: for every action, 

there is an equal and opposite reaction

developed fundamental Laws of  Motion

[momentum = mass x velocity]

[force = mass x acceleration]

[gravity = 9.8 m.s-2]

Energy

defined as the ability to do work

• potential energy (stored)

• kinetic energy (of  motion)

• thermal energy (heat)

• chemical energy (stored in bonds between atoms)

• nuclear energy (bound within nucleus of  atom)

• electromagnetic energy (electricity, magnetism,

light, X-rays, microwaves, radio waves, etc)

POWER   (kW = kWh/d)

FORCE:     Newton’s second law of  motion

Force (newtons) = mass (kg) x acceleration (m s-2) [1 kg m s-2 = 1 N]

WORK:     application of  energy over distance

Work, energy (joules) = force (N) x distance (m)     [1 N m = 1 J]

POWER:    rate of  energy usage

Power (watts) = work, energy (J) / time (s) [1 J s-1 = 1 W]

[1 J      = 1 Ws]

Energy is a quantity (measured in J or kWh) [1kWh = 3.6 million J]

Power is a rate (measured in W or kWh/d) [1 kW  = 24 kWh/d]

[1 kWh/d = 1000 Wh / 24 h = 40 W]

Does it make sense in terms of  SI units?

Australian CO2 emissions

World emission ~ 30 GtCO2e/y 

(population of  6 billion,  ~ 5 tonsCO2e/y per person)

BUT, not all countries are equal

Australian emission ~ 0.5 GtCO2e/y 

(population of  20 million,  ~ 25 tonsCO2e/y per person)

Regrettably, we are the champions!!!

Ranked fourth in world (behind Qatar, UAE & Kuwait)

(worse than USA & Canada)

WHY?    Life-style, tyranny of  distance, over-reliance of  coal

Australian power consumption

Australians emit ~ 25 tonsCO2e/y per person

Equates to: 

Power consumption =  rate of  energy use

=  7.9 kW pp         [1 kW = 24 kWh/d]

= 190 kWh/d pp
Sources:

- fossil fuels (coal, gas, oil)

- renewables (hydroelectricity, solar, wind)

- other (nuclear)

Consumption:

- most as electricity (domestic/industrial power)

- internal combustion engines (automotive power)
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Energy consumption (Australia)

TOTAL  190 kWh/d per person

Cars

Planes

Household

Lighting

Gadjets

Food/farming

Manufacturing

Public services

Energy consumption: cars

Consider average daily use of  car

Fuel calorific value = 10 kWh/L

Energy per day =                                                            x 
distance travelled per day

distance per unit fuel
energy per unit fuel

=                                x                         
50 km/day

12 km/L
10 kWh/L

=     40 kWh/d

Energy consumption: planes

Boeing 747 uses 200,000 L fuel to carry 400 passengers

a distance of  14,000 km  [fuel calorific value = 10 kWh/L]

distance travelled per day

distance per unit fuel per person

Energy used for single return flight once per year

=                                                           x

=                                                                                   x

=

energy per unit fuel

(2 x 14,000 km) / 365 days

(2 x 14,000 km) / [(2 x 200,000 L) / 400 persons]
10 kWh/L

27 kWh/d per person

Energy consumption: household

Ehot-water = heat capacity  x volume  x temperature difference

Eshower    =   4200 J/L/oC    x    30 L    x   (50-10)oC       =    5 MJ  (= 1.4 kWh)

Energy used for one 5 minute shower per day = 1.4/12 = 0.1 kWh/d]

Energy used by electric kettle per day =   power  x   time used per day

=  3 kW  x  0.5 h/d      =   1.5 kWh/d

Cooking (stove, oven, microwave, kettle) (~3kW appliances) =   5 kWh/d

Cleaning (bathing, washer/dryer, dishwasher) (~2.5 kW) =   5 kWh/d

Cooling (refrigerator, freezer) (0.1 kW) =   2 kWh/d

Air-conditioning (heating/cooling) (1 kW) = 24 kWh/d

TOTAL = 36 kWh/d

Energy consumption: light

Average home uses ~ 20 globes for 6 hours per day

10 incandescent globes require 1 kW power

10 low-energy globes require 0.1 kW power

Energy used per day for:

household lighting = (power  x  time)  /  av. no. people per home

= (1.1 Kw  x  6 h/d) / 2      

=  3.3 kWh/d 

workplace lighting  = 1.6 kWh/d

street lighting = 0.1 kWh/d 

TOTAL =    5 kWh/d 

Energy consumption: gadjets

Appliance with power rating of  40 W = 1 kWh/d

but only used for fraction of  each day

quantity rating sum usage         Power

(no.)     x   (W)      =     (kW)    x   (h/d)    =   (kWh/d)

Computer/printer 2             100              0.2 4        0.8

TV/DVD/VCR 2 100              0.2              3                0.6

Xbox/PS/Wii 2             200              0.4              2                0.8

CD/stereo/radio              2             100             0.2               2                0.4

Chargers (phone,…)     4                  5           0.02             24                0.5

Vacuum cleaner             1           1600             1.6               1                1.6

Lawn mower                    1                                                                         0.3

TOTAL =    5 kWh/d 
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Energy consumption: food/farming

One 65 kg person uses 2,600 Calories per day (= 2.6 million calories) ~ 3 kWh/d

Item Consumption – Production Power

milk, cheese consume 0.75 L/d, 450 kg cow produces 16 L/d,

uses 450 x 3/65 kWh/d (0.75/16 x 450 x 3/65) 1 kWh/d

eggs eat 2 eggs/d, chicken lays 290 eggs/yr, eat

120 g/d @ 3.3 kWh/kg  (2  x 365/290 x 0.12 x 3.3) 1 kWh/d

meat eat 100 g/d each of  chicken, beef and pork,

(50, 1000 & 400 days nurture @ 3/65 kWh/d/kg) 7 kWh/d

fruit/vegies eat 250 g/d, 200 days nurture @ 3/130 kWh/d/kg 1 kWh/d

pets  cats, dogs and horses, 1 per 10 persons 3 kWh/d

TOTAL 13 kWh/d

Energy consumption: manufacturing

Item Consumption x embodied production cost Power

drink containers (aluminum cans/bottles)      5 units/d @ 0.6 kWh/unit         3 kWh/d

packaging (glass/paper/plastic/steel) 0.4 kg/d @ 10 kWh/kg        4 kWh/d

computer (1 every 2 years)                 1/(2x365) unit/d @ 1500kWh/unit         2 kWh/d

print (newspapers/magazines/junk mail) 0 .2 kg/d @ 10 kWh/kg        2 kWh/d

house (1 every 100 years, 2.3 persons)        1/(100x365x2.3) @ 84000         1 kWh/d

car (1 every 15 years) 1/(15x365) units/d @ 76000 kWh/unit      14 kWh/d

roads (building/upkeep over 50 yrs)   1/(50x365) m/d @ 36000 kWh/m         2 kWh/d 

road transport       51billion t-km / (365 x 20 million pop) @ 1 kWh/t-km        7 kWh/d

shipping       2000billion t-km / (365 x 20million pop) @ 0.015kWh/t-km        4 kWh/d

water treatment 160 L/d @ 0.002 kWh/L    0.3 kWh/d

sewage treatment  100L/d @ 0.002 kWh/L    0.2 kWh/d 

supermarkets 5000 units / (365 x 20 million) @ 3.6 GWh/unit    0.5 kWh/d

imports (55 million tonnes per yr)          2 kg/d @ 10 kWh/kg     20 kWh/d 

TOTAL 60 kWh/d

Energy consumption: public services

Energy consumption greatest in ADF

3.2% GDP spent on defence  = $18 billion

25% spent on energy   = $4.5 billion

@ 14.8cents/kWh  = 30 billion kWh per year

= 83 million kWh per day

Population of  20 million

gives 4 kWh/d per person

Australian government annual budget $560 billion (GDP)

Energy consumption (Oz)

kWh/d per person

Cars 40

Planes 27

Household 36

Lighting 5

Gadjets 5

Food/farming 13

Manufacturing 60

Public services 4

TOTAL 190

SOURCE kWh/d per person

Fossil fuels coal, gas, oil 6

Wind onshore 20

offshore shallow 15

offshore deep 30

Solar thermal 12

photovoltaic 5

biomass 33

Hydroelectricity lowland 8

highland 3

Wave oceanic 5

Tide coastal 15

Geothermal crust 2

TOTAL 154

Renewable power production (Aust.) Power deficit

Total power production    154 kWh/d per person

Total power consumption  190 kWh/d per person

Deficit 36 kWh/d per person

Where will it come from?

What sources are left?

Nuclear energy (fission, fusion)    1-420
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Question 4.4.1 Later in semester we will study the HyShot rocket

project, initiated by UQ scientists to help develop hypersonic flight.

On one HyShot launch, a rocket reached a height of 330 km above

the surface of Earth. Find the acceleration due to gravity at that

height. (Hint: the mass of Earth is Me ≈ 5.97 × 1024 kg and the

radius of Earth is Re ≈ 6.37×106 m. Use units in your calculations.)
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4.5 Biology: living organisms

Biology is the science concerned with the study of life - the structure,
function and co-existence of living organisms. Matter and energy are both
vitally important to living organisms, providing substance and sustenance.
Living organisms are carbon- and water-based cellular forms, with complex
organisation and heritable genetic information. They undergo metabolism,
possess a capacity to grow, respond to stimuli, reproduce and, through
natural selection, adapt to their environment in successive generations.
Living organisms could be described as ‘self-replicating, membrane-bound,
microscopic bags of sugary, proteinaceous water’.

1. Why bags? Cells are the basic units of life. These bags preserve
the structural integrity of the organism and maintain the boundary
between the external and internal environments. Many life forms persist
as unicellular organisms, while others exist as complex multicellular
organisms with aggregates of cells forming specialised tissues and
organs. All cells exhibit three basic features:
– they are bound by cytoskeletal elements (to provide form, and

sometimes motility);
– they have internal organelle systems (to meet metabolic and

developmental requirements); and
– they have centralised genetic material (to process information).

2. Why microscopic? Living organisms exist as a wide range of sizes.
Compare the sizes of giant redwoods, blue whales, dogs, mushrooms,
plankton, algae, amoebas, and bacteria. They occur over 8 orders of
magnitude, from 1 µm (10−6 m) to 100 m (102 m). However, their
constituent cells only range in size over 2 orders of magnitude, from 1
to 100 µm. Cells are limited to microscopic sizes in order to maintain
high surface-to-volume ratios so that molecules can move throughout
the whole cell. Even though molecular transport processes may involve
diffusion (random movement down concentration gradients towards
equilibrium), passive transport (facilitated diffusion through specific
channels), or active transport (energy-dependent movement against
concentration gradient using carrier protein/transporter/pump), they
are only effective over microscopic distances.

3. Why water? Water is the fluid of life! Many cells are composed of
70–95% water. The molecule H2O has many unique properties. Due to
its nonlinear shape, it has a polar charge that contributes to its cohesive
(binding) and adhesive (wetting) properties. It has three physical states
under prevailing climatic conditions: gas (water vapour), liquid (oceans,
lakes) and solid (ice).
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Water has a high specific heat due to its kinetic energy and acts as a
thermal bank to stabilise temperatures. Water has remarkable chemical
properties which allow it to function as a reactant (able to hydrolyse
chemical reactions) and as a universal solvent (able to dissolve salts,
sugars, and many proteins).
Atoms in water may occasionally lose or gain electrons, resulting in
the dissociation of the molecule into positively charged hydrogen ions
(H+) and negatively charged hydroxide ions (OH−). The relative ratio
of these ions contributes to the acid-base balance of a solution. In
any aqueous solution, the product of H+ and OH− concentrations is
constant at 10−14, written as the equation [H+] [OH−] = 10−14, where
square brackets indicate molar concentrations (mol L−1). In a neutral
solution, both [H+] and [OH−] equal 10−7, so as expected the product
is 10−14. If acid is added to increase [H+] to 10−6, then [OH−] will
decrease proportionately to 10−8. Because ion concentrations can vary
by a factor of 1012 or more, scientists used logarithms to compress this
variation into the pH scale, defined as the negative logarithm of the
hydrogen ion concentration, so pH = − log[H+]. For a neutral solution,
[H+] is 10−7 M, thus giving pH = − log 10−7 = −(−7) = 7. Notice that
pH decreases as [H+] increases, meaning acids have low pH whereas
bases have high pH. Most biological fluids are in the range pH 6-8.

4. Why membrane-bound? Cells must be structurally bound by
substances that are insoluble in water. Lipids (fats) provide those
substances, as most lipids are insoluble. They are composed of long
chain fatty acids attached to a glycerol core. In modern society, fats
are perceived to be bad things, associated with obesity and chronic
disease. However, lipids serve many essential functions: triglycerides
and lipoproteins act as energy stores, cholesterol is the precursor of
many steroid hormones, and phospholipids form membranes. They
are essential building blocks, and all cell membranes are composed of
phospholipid bilayers. These polar molecules have hydrophilic heads
and hydrophobic tails, which become assembled into bilayered sheets,
forming the core of all cell membranes.

5. Why proteinaceous? Cells require many chemicals for metabolic
processes, development and multiplication. The basic building blocks
are proteins, which are polymeric molecules composed of chains of
amino acids. While the numbers of proteins found in a cell may run
into the hundreds of thousands, they are all formed from the same
set of 20 amino acids. Proteins vary extensively in structure, each
type having a unique three-dimensional shape due to four levels of
conformational complexity: amino acid sequence (primary), coiling
(secondary), folding (tertiary) and combination (quaternary).
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6. Why sugary? Carbohydrates include monosaccharides (simple
sugars), disaccharides (double sugars) and polysaccharides (polymers).
They are all rich sources of chemical energy (stored in their molecular
bonds) and their carbon skeletons serve as raw materials for the
synthesis of other molecules, including amino acids (proteins) and fatty
acids (lipids). Glucose (C6H12O6) is the most common sugar involved
in the chemistry of life. It is produced as an energy source through
photosynthesis by plants, and it is ingested by animals for glycolysis via
aerobic metabolism (literally, burning sugar in the presence of oxygen to
yield energy). It is therefore a vital fuel for many living organisms, and
its cellular uptake is tightly regulated by various hormonal homeostatic
mechanisms (insulin and glucagon in humans).

7. Why self-replicating? All life forms have limited life spans and
ultimately die (their components effectively wear out). They must
therefore replicate themselves in order for their species to survive.
Whether cells multiply asexually (mitosis) or sexually (meiosis),
they essentially copy their genetic codes spelt out by the nucleotide
sequences of their DNA (deoxyribonucleic acid). DNA is a linear
polymer composed of four nucleotides: the purines, adenine (A) and
guanine (G), and the pyrimidines, cytosine (C) and thymine (T) (T is
substituted by uracil (U) in RNA). Two strands of DNA are wound
together in a double helix, such that only complementary bases are
aligned (G aligns only with C, and A only with T). The central dogma
of life is that of DNA replication, for it facilitates inheritance and
metabolism (through DNA transcription to RNA and its translation to
proteins).

Collective co-existence

There are many levels of biological organisation, from miniscule to majestic.
We have examined molecules (building blocks of matter) and cells (basic
units of life). We know living things range from single-celled organisms
(simple, but by no means primitive) to multicellular organisms (with cellular
specialisation to form complex tissues and organs).
SCIE1000, Section 4.5. Page 99



We also recognise several levels of collective co-existence, where organisms
live together in:

• populations (all the individuals of one species within a given area);

• communities (all species of living organisms within a given area);

• ecosystems (all living things within a given area, together with all the
non-living components in that area with which life interacts); and the

• biosphere (all the environments on Earth inhabited by life).

The definitions of these collective concepts have elastic boundaries, so the
area of study must be specified. For example, ecosystems can vary in size
from an aquarium to a lake, meadow, mountain range or continent.

The dynamics of all ecosystems include two major processes: nutrient cy-
cling; and energy flow. Nutrients are constantly recycled within ecosystems.
They are used to build organic materials which subsequently degrade, releas-
ing them back into the system. All chemical elements (such as carbon and
nitrogen) pass through complex cycles which incorporate both living and
nonliving parts of an ecosystem. In contrast, energy constantly flows into
an ecosystem (usually as sunlight), where it is converted to chemical energy
by producers (usually photosynthetic organisms) and utilised by consumers
(herbivores and carnivores) and decomposers (microbes). Ecosystems are
therefore said to recycle matter while energy flows through.

Ecology is the study of interactions between organisms and their environ-
ments - a holistic science involving many disciplines. Ecologists study
organismal biodiversity, distribution and abundance (species richness,
temporal and spatial variation) with respect to biotic and abiotic (envi-
ronmental) influences. In particular, human activities can have profound
ecological effects, whether accidental (like oil spills), deliberate (urban
development) or unintended (acid rain, global warming). Key areas of
ecological research include:

• Ecosystem ecology, emphasising energy flow and chemical cycling
among the various biotic and abiotic components;

• Community ecology, dealing with the interactions between the whole
array of species in a community, including competition, predation,
herbivory, symbiosis, and disease; and

• Population ecology, concentrating mainly on factors that affect how
many individuals of a particular species live in an area.
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1

BIOLOGY

the study of life

molecular biology

cellular biology

organismal biology

population biology

environmental biology 

- self-replicating, 

- membrane-bound, 

- microscopic 

- bags of 

- sugary,

- proteinaceous

- water

Living organisms are:

Why bags?

Cells are basic units of life

• preserve structural integrity

• maintain boundary between 
internal & external environments

unicellular

multicellular

Cells possess:

• internal cytoskeletal elements

• internal organelle systems

• centralized genetic material

Why microscopic?

• need to preserve high 

surface-to-volume

ratio (for efficient 

molecular transport)

• imagine cell as cube

[double length involves

4-fold change in area and

8-fold change in volume]

• cells 1-100 m

(note log scale)

Why water?

fantastic molecule

• polar charge 
(adhesion/cohesion)

• universal solvent 
(dissolve electrolytes, sugars,
proteins, etc)

• biochemical reactant
(hydrolysis)

H2O dissociation into ions

acid-base balance

[H+] [OH-] = 10-14

cumbersome, so developed

pH scale = -log [H+] 

physiological saline pH 7.4

Why membrane-bound?

• membranes hold cells together

• made of insoluble phospholipids (fats)

polar heads

phospholipid
bilayer

nonpolar tails

semipermeable
membrane

plus embedded
proteins, 
sugars,
cholesterol,
filaments
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1

Why sugar?

• produced by plants

(photosynthesis)

• used by animals

(glycolysis)

• stored as glycogen

carbo-hydrates  (sugars)

rich source of  energy

(stored in molecular bonds)

glucose C6H12O6

Energy flow (it’s a plastid world)


6 CO2      +       6 H2O C6H12O6      +       6 O2

(carbon dioxide)             (water)                                 (glucose)                      (oxygen)



mitochondria

glycolysis

chemical energy                    animals   

plants                            solar energy

photosynthesis

chloroplasts

Why proteinaceous?

Building blocks of  life (structural, functional)

polymers composed of  chains of  amino acids

20 amino acids

produced

chains with

3D structure

primary (chain)        secondary (coil)       tertiary (fold)       quaternary

Cell cycle 

• interphase (G1, S, G2)

• division phase (M)

Type of  division

• asexual (1  2)

– mitosis, fission, budding, endogeny

• sexual (1+1  2)

– meiosis (haploid gametes combine)

Why self-replicating?

Cells not immortal (need to grow and divide)

INTERPHASE

G1

S

(DNA synthesis)

G2M

Cellular basis of life

transcription                translation

RNA ProteinDNA 

replication

DNA

Central dogma: 

• flow of genetic information is unidirectional

LIFE on Earth

• chemical basis (carbon-based life on water-planet)
– proteins, sugars, fats, nucleotides

• genetic code (DNA)
– replication, transcription, translation
– four bases (2 bit (binary digit) code)

• cellular organization (membranes, organelles, nuclei)
– basic units of  life

• evolution (natural selection, survival of  fittest)
– mutation, recombination

• symbioses (living together)
– organelles (SET)
– organisms (life styles)

 collective co-existence (ecology)
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Question 4.5.1 Cells are the basic units of all life-forms.

(a) Why are cells constrained to microscopic sizes? What would you

predict about their surface area to volume ratio?

(b) Calculate algebraically the surface area to volume ratio of a

(model) cell in the shape of a cube. What happens to this ra-

tio if the side-length of the cell doubles? What happens with a

10-fold increase?

(c) What structural adaptations have cells adopted to maintain op-

timal ratios?
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4.6 Space for additional notes
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5 Quantitative reasoning
Our galaxy itself contains a hundred billion stars.
It’s a hundred thousand light years side to side.
It bulges in the middle, sixteen thousand light years thick,
But out by us, it’s just three thousand light years wide.
We’re thirty thousand light years from galactic central point.
We go ’round every two hundred million years,
And our galaxy is only one of millions of billions
In this amazing and expanding universe.

The universe itself keeps on expanding and expanding
In all of the directions it can whizz
As fast as it can go, at the speed of light, you know,
Twelve million miles a minute, and that’s the fastest speed there is.
So remember, when you’re feeling very small and insecure,
How amazingly unlikely is your birth,
And pray that there’s intelligent life somewhere up in space,
’Cause there’s bugger all down here on Earth.

Artist: Monty Python
(www.youtube.com/watch?v=buqtdpuZxvk)

The Thinker (1879 – 1888), Auguste Rodin (1840 – 1917), Musee Rodin, Paris.
(Image source: en.wikipedia.org/wiki/File:The Thinker close.jpg)
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Introduction

One of the most important activities in almost every profession is commu-
nicating, both verbally and in written form. Clear and accurate communi-
cation is particularly important in science-based disciplines, whether you
work in research, education or industry.

A large amount of science relies heavily on mathematics and statistics, and
most scientific advances are based on quantitative evidence. For example,
each time you visit a doctor (or see a patient if you are a doctor), it is
almost certain that the conversation and recommendations will make direct
or indirect use of quantitative facts and analysis. (For example, most people
in this room either already have sought, or will in the future seek, answers
to questions like: what are the chances of pregnancy if a sexually active
woman uses an oral contraceptive; what is the likelihood of suffering a
significant harmful side effect from the contraceptive; and what are the
relative risks and benefits of choosing a longer-term contraceptive injection
instead?)

As a producer of quantitative scientific communication, you should take
care that your communication is honest, unambiguous and precise, and
that you always use appropriate units. As a consumer of such information,
you should always critically evaluate the content, maintaining a healthy
scepticism (note that ‘healthy’ means questioning claims and statements,
while at the same time accepting evidence even if it is counter to your
beliefs or preconceptions).

Some of the examples/contexts we will discuss are:

• Health practitioners, patients and mathematics.

• Breast cancer.

• Media reports.

Specific techniques and concepts we will cover include:

• Estimation.

• Critical evaluation.
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5.1 Quantitative communication

• In SCIE1000 we will investigate some of the fundamental skills

and concepts that will help you to participate in effective scientific

analysis and communication.

• We are all producers and consumers of quantitative scientific

information:

– we produce it (for example) in scientific papers, assignments,

lecture notes, exam answers and professional communications

such as doctor/patient discussions.

– we consume it (for example) in scientific papers, the classroom,

media reports and when we visit a doctor.

• As a producer of such information, we should aspire to be concise,

precise, accurate, honest, logical, unambiguous, not excessively

technical, use appropriate units and always mindful of the intended

audience.

• As a consumer of such information, we should aspire to be

thoughtful, reflective, sceptical, logical and analytical, while at

the same time open-minded and accepting of evidence which may

differ from our preconceptions or opinions.

• The media and internet provide a continual bombardment of facts,

reports, summaries, interpretations and opinions, often covering

sophisticated concepts but written and read by non-experts.

In many cases there are errors (or deliberate falsities)in such

communications.

• Two approaches to identifying errors or false claims are:

– estimation and

– critical evaluation.

• You should apply these when doing your own work, and also when

using material from other sources.
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5.2 Estimation

• Estimation (or back-of-the-envelope calculations, or rough esti-

mation) is the process of calculating approximate values.

• Estimating relies on building rough, conceptual models which can

either be evaluated mentally or using simple calculations.

• Estimating ‘gives an idea’ whether a particular value is plausible.

Often, the aim is for the approximate value to be within an order

of magnitude of the correct value (that is, within a factor of 10).

• Estimation problems are sometimes called Fermi problems.

Question 5.2.1 Develop approaches that allow you to roughly

estimate answers to each of the following Fermi problems, then esti-

mate the value.

(a) Each year, around 4 × 107 kg of space dust lands on earth.

Roughly estimate the amount of space dust which lands on your

head during your lifetime.

continued...
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Question 5.2.1 (continued)

(b) Measurements of various processes within the body are crucial

health indicators. Estimate the total volume of blood pumped

by your heart each day.

(c) Estimate the mass of a large storm cloud.

continued...
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Question 5.2.1 (continued)

(d) The change in a population size over a given time period equals

births − deaths + immigration − emigration.

If migration is ignored, the calculated quantity is called the rate

of natural increase of the population. Estimate the number of

births and deaths in Australia each year.

(e) After consuming alcohol, Blood Alcohol Concentration (BAC)

is influenced by such factors as: volume of alcohol consumed,

time since consumption and the water % of the body (because

alcohol is water-soluble, but is not fat-soluble). Estimate the

water % of a ‘typical’ human body. (Forensic science units need

to do this.)
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5.3 Critical evaluation

The Wikipediaa entry on critical thinking says:

“Critical thinking is the purposeful and reflective judgment about

what to believe or what to do in response to observations, experience,

verbal or written expressions, or arguments. Critical thinking involves

determining the meaning and significance of what is observed or

expressed, or, concerning a given inference or argument, determining

whether there is adequate justification to accept the conclusion as

true. . . Parker and Moore define it more naturally as the careful,

deliberate determination of whether one should accept, reject, or

suspend judgment about a claim and the degree of confidence with

which one accepts or rejects it.

Critical thinking gives due consideration to the evidence, the context

of judgment, the relevant criteria for making the judgment well, the

applicable methods or techniques for forming the judgment, and the

applicable theoretical constructs for understanding the problem and the

question at hand. Critical thinking employs not only logic but broad

intellectual criteria such as clarity, credibility, accuracy, precision,

relevance, depth, breadth, significance and fairness.”

Question 5.3.1 There are special challenges in critically evalu-

ating reports with mathematical, statistical or quantitative claims.

Discuss these challenges.
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5.4 Huh?

Case Study 5:

Losing patients with mathematics?

www.imagingpathways.health.wa.gov.au/includes/images/mass/mammo.jpg

From left: normal breast (en.wikipedia.org); breast with tumour (en.wikipedia.org); breast with tumour
highlighted (breastcancer.about.com).

• Sometimes, particularly in a medical context, understanding and

critically evaluating quantitative communications and concepts

can be a matter of life and death.

• An important recent research papera covered this.
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Losing patients with mathematics? (continued)

Question 5.4.1 Many SCIE1000 students aim to become doctors,

and everyone visits doctors. The Australian Medical Association

(AMA) states on its website:

“The AMA believes that in order to support and enhance the

collaborative nature of the doctor-patient relationship, pa-

tients must be able to make informed choices regarding their

health care. An informed choice is dependent on receiving re-

liable, balanced health information, free from the influence of

commercial considerations, that is communicated in a man-

ner easily understood by patients.”

Meeting this goal places a range of responsibilities on patients, doc-

tors, researchers, medical companies and the media. Discuss these

responsibilities from the perspective of quantitative science.
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Losing patients with mathematics? (continued)

Example 5.4.2 (From Gigerenzer et al.) “Many doctors, patients,

journalists, and politicians alike do not understand what health

statistics mean or draw wrong conclusions without noticing. . . .

We provide evidence that statistical illiteracy:

(a) is common to patients, journalists, and physicians;

(b) is created by nontransparent framing of information that is

sometimes an unintentional result of lack of understanding but

can also be a result of intentional efforts to manipulate or per-

suade people; and

(c) can have serious consequences for health.

The causes of statistical illiteracy should not be attributed to cogni-

tive biases alone, but to the emotional nature of the doctor/patient

relationship and conflicts of interest in the healthcare system. The

classic doctor/patient relation is based on (the physician’s) pater-

nalism and (the patient’s) trust in authority, which make statistical

literacy seem unnecessary; so does the traditional combination of

determinism (physicians who seek causes, not chances) and the illu-

sion of certainty (patients who seek certainty when there is none).

We show that information pamphlets, Web sites, leaflets distributed

to doctors by the pharmaceutical industry, and even medical jour-

nals often report evidence in nontransparent forms that suggest big

benefits of featured interventions and small harms. Without under-

standing the numbers involved, the public is susceptible to political

and commercial manipulation of their anxieties and hopes, which

undermines the goals of informed consent . . .

Statistical literacy is a necessary precondition for an educated cit-

izenship in a technological democracy. Understanding risks and

asking critical questions can also shape the emotional climate in a

society so that hopes and anxieties are no longer as easily manipu-

lated from outside and citizens can develop a better-informed and

more relaxed attitude toward their health.”
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Losing patients with mathematics? (continued)

Example 5.4.3 (From Gigerenzer et al.)

“In October 1995, the U.K. Committee on Safety of Medicines is-

sued a warning that third-generation oral contraceptive pills in-

creased the risk of potentially life-threatening blood clots in the

legs or lungs . . . by 100%. This information was passed on . . . to

190,000 general practitioners, pharmacists, and directors of public

health and was presented in an emergency announcement to the me-

dia. The news caused great anxiety, and distressed women stopped

taking the pill, which led to unwanted pregnancies and abortions. . . .

How big is 100%? The studies on which the warning was based

had shown that of every 7,000 women who took the earlier, second-

generation oral contraceptive pills, about 1 had a thrombosis; this

number increased to 2 among women who took third-generation

pills. That is, the absolute risk increase was only 1 in 7,000, whereas

the relative increase was indeed 100%.

Absolute risks are typically small numbers while the corresponding

relative changes tend to look big - particularly when the base rate is

low. Had the committee and the media reported the absolute risks,

few women would have panicked. . . .

The pill scare led to an estimated 13,000 additional abortions (!) in

the following year . . .

For every additional abortion, there was also one extra birth . . . with

some 800 additional conceptions among girls under 16 . . .

Ironically, abortions and pregnancies are associated with an in-

creased risk of thrombosis that exceeds that of the third generation

pill.

The pill scare hurt women, hurt the National Health Service, and

even hurt the pharmaceutical industry. Among the few to profit

were the journalists who got the story on the front page.”
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Losing patients with mathematics? (continued)

Example 5.4.4 (From Gigerenzer et al.)

Pharmaceutical leaflets, advertising and doctors

“Researchers from the German Institute for Quality and Efficiency

in Health Care searched for the original studies and compared these

with the summaries in 175 leaflets [produced for doctors by the

pharmaceutical industry] . . . . The summaries could be verified in

only 8% of the cases (!). In the remaining 92% of cases, key results of

the original study were often systematically distorted or important

details omitted. For instance, one pamphlet from Bayer stated that

their potency [male sexual function] drug Levitra (Vardenafil) works

up to 5 hours - without mentioning that this statistic was based on

studies with numbed hares.

Should doctors have wanted to check the original studies, the cited

sources were often either not provided or impossible to find.

In general, leaflets exaggerated baseline risks and risk reduction,

enlarged the period through which medication could safely be taken,

or did not reveal severe side effects of medication pointed out in the

original publications.”

Question 5.4.5 (From Gigerenzer et al.) “At the beginning of one

continuing-education session in 2007, 160 gynaecologists were pro-

vided with the following relevant health statistics needed for calcu-

lating the chances that a woman with a positive test actually has

breast cancer, and then given the following question. continued...
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Losing patients with mathematics? (continued)

Question 5.4.5 (continued)

‘Assume you conduct breast cancer screening using mammography

in a certain region. You know the following information about the

women in this region:

• The probability that a woman has breast cancer is 1% (preva-

lence)

• If a woman has breast cancer, the probability that she tests

positive is 90% (sensitivity)

• If a woman does not have breast cancer, the probability that she

nevertheless tests positive is 9% (false-positive rate)

A woman tests positive. She wants to know whether that means

that she has breast cancer for sure, or what the chances are. What

is the best answer?

A. The probability that she has breast cancer is about 81%.

B. Out of 10 women with a positive mammogram, about 9 have

breast cancer.

C. Out of 10 women with a positive mammogram, about 1 has

breast cancer.

D. The probability that she has breast cancer is about 1%.’

The number of physicians who found the best answer, as documented

in medical studies, was slightly less than chance (21%).”

What is the answer to the above question, and why?
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Losing patients with mathematics? (continued)

Example 5.4.6 (From Gigerenzer et al.)

“A conference on AIDS held in 1987 . . . reported that of 22 blood

donors in Florida who had been notified that they had tested posi-

tive with the ELISA test [for AIDS], 7 committed suicide.

Indeed, the test (consisting of one or two ELISA tests and a Western

Blot test, performed on a single blood sample) has an extremely

high sensitivity [proportion of infected individuals who correctly test

positive] of about 99.9% and specificity [proportion of non-infected

individuals who correctly test negative] of about 99.99%. . . .

To investigate the quality of counseling of heterosexual men with

low-risk behaviour, an undercover client visited 20 public health

centers in Germany to take 20 HIV tests.

The client was explicit about the fact that he belongs to no risk

group, like the majority of people who take HIV tests. In the

mandatory pretest counseling session, the client asked: ‘Could I

possibly test positive if I do not have the virus? And if so, how

often does this happen?’

The answers from the medical practitioners were:

No, certainly not False positives never happen

Absolutely impossible With absolute certainty, no

With absolute certainty, no With absolute certainty, no

No, absolutely not Definitely not ... extremely rare

Never Absolutely not ... 99.7% specificity

Absolutely impossible Absolutely not ... 99.9% specificity

Absolutely impossible More than 99% specificity

With absolute certainty, no More than 99.9% specificity

The test is absolutely certain 99.9% specificity

No, only in France, not here Don’t worry, trust me”
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Losing patients with mathematics? (continued)

Question 5.4.7 The base rate of infection for heterosexual men

with low-risk behaviour is around 1 in 10,000.

(a) What is the (approximate) probability that someone who tests

positive on the AIDS test is infected?

(b) Calculate the probability that at least one person who commit-

ted suicide after testing positive did not have AIDS.

(c) Comment on the responses of the German doctors, relating your

answer to the AMA statement in Question 5.4.1.
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Losing patients with mathematics? (continued)

Example 5.4.8 Consider the following extract from a papera.

“This condition [female sexual dysfunction] is claimed by enthusi-

astic proponents to affect 43% of American women, yet widespread

and growing scientific disagreement exists over both its definition

and prevalence. In addition, the meaningful benefits of experimen-

tal drugs for women’s sexual difficulties are questionable, and the

financial conflicts of interest of experts who endorse the notion of a

highly prevalent medical condition are extensive. . .

One of the biggest hurdles for drug makers in this area is showing

a big enough benefit over placebo to outweigh concerns about short

or long term side effects. These concerns are made more acute by

recent revelations about hormone replacement therapy, antidepres-

sants, and anti-arthritis drugs. . .

In anticipation of regulatory approval of its testosterone patch - the

first drug assessed for female sexual dysfunction - Proctor and Gam-

ble unleashed a multilayered global marketing campaign. . . Long be-

fore its testosterone patch had even been assessed for approval, the

company’s global marketing had been strategically targeting health

professionals, reporters, and the general public, seeking to shape

their perceptions of female sexual problems and how to treat them.

Enthusiastic media coverage has often followed these presentations,

most notably when a press release carried a headline suggesting the

patch caused a 74 per cent increase in frequency of satisfying sexual

activity. . . ”

Preliminary results of 24-week randomised controlled trials of a

patch in surgically menopausal women are shown in the following

table (there were two trials, with n ≈ 500 in each case).

continued...

aMoynihan, The marketing of a disease: female sexual dysfunction, British
Medical Journal 330 (2005) 192–194.
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Losing patients with mathematics? (continued)

Example 5.4.8 (continued)

Outcome Placebo Patch Placebo Patch

Sexual activity 0.98 2.13 0.73 1.56

(episodes/month)

Sexual desire 6.9 11.85 6.21 11.38

(100 point scale)

(Figures for ‘sexual activity’ represent an increase from a baseline of about 3
satisfying episodes a month. Figures for ‘sexual desire’ represent an increase from
a baseline score of 20−23.)

Question 5.4.9 Discuss the claims and results in Example 121.

(For interest, two patches are required per week; in January 2010,

packets of 24 patches were selling online for about $USD400.)
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Losing patients with mathematics? (continued)

• It is easy to think that the above examples “do not apply to me. . . I

am different”. If you are tempted to believe that, then note the

following results from a recent two-year Australian study.

Extension 5.4.10 (From The Australian newspaper, February 01, 2010.)

“Training fails to prepare new doctors

Medical students are emerging from the nation’s universities feel-

ing inadequately prepared to deal with crucial tasks such as cal-

culating safe drug doses and writing prescriptions.

In a challenge to Kevin Rudd’s twin promise to improve uni-

versity education and doctor shortages, a government study has

also revealed that medical supervisors feel the abilities of hospi-

tal interns fall short of their expectations.

The study reveals just 36 per cent of junior doctors think they

have been adequately or well-prepared to do wound manage-

ment.

And only 29 per cent of final-year medical students feel they

have been adequately prepared to calculate accurate drug doses.

The landmark review of the nation’s medical education system

was finalised 19 months ago but released only on Friday.

Medical leaders warn that the extra influx of students since the

Education Department commissioned the research has made the

failings it describes even worse. . .

The report found medical students feared for their skills in a

number of key areas, including knowledge of basic sciences, while

hospitals increasingly struggled to make time for effective teach-

ing in the face of packed waiting rooms.”

End of Case Study 5.
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Question 5.4.11 Critically evaluate each of the following items

quoted from various news sources and websites.

(a) (Courier mail, November 27, 2009)

“HERE is something to get you in the mood tonight: a 10-year

Welsh study found that those who enjoyed an active sex life were

50 per cent less likely to have died during that time than those

who did not.”

(e) (Australian Vaccination Network publicationsa)

“According to medical reports, children are now less healthy

than they have ever been before. More than 40% of all chil-

dren now suffer from chronic conditions, something that was

unheard of prior to mass vaccination. Vaccines have been asso-

ciated with such conditions as Asthma, Eczema, Food Allergies,

Chronic Ear Infections, Insulin Dependent Diabetes, Arthritis,

Juvenile Rheumatoid Arthritis, Autism, Attention Deficit Dis-

order, Ulcerative Colitis, Irritable Bowel Syndrome, Hyperac-

tivity, Schizophrenia, Multiple Sclerosis, Cancer and a raft of

other chronic and auto-immune conditions which are experienc-

ing dramatic rises in incidence.”

continued...

aThe Australian Vaccination Network is opposed to mass vaccinations
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Question 5.4.11 (continued)

(c) (www.naturalnews.com/023032.html, April 16, 2008)

“Odds of intensive care medication errors are over one

hundred percent

A report produced by PubMed Central states that 1.7 errors per

day are experienced by patients in intensive care units (ICU).

At least one life-threatening error occurs at some point during

virtually every ICU stay. 78% of the serious medical errors are in

medications. 1.7 errors per day times 78% equals the likelihood

of experiencing a medication error while in an ICU of well over

100% per day. That means the odds are that you will receive

the wrong medication or the wrong amount of a medication at

least once every single day of an ICU stay.”

(d) (www.news.com.au/heraldsun; December 16, 2008.)

“The institute tracked more than 350 patients receiving treat-

ment for back pain. They were followed over one year and con-

tacted at six weeks, three months and 12 months. Dr Maher

said the research showed one-in-four would go on to suffer a re-

currence of back pain within a year. ‘This explains why around

25 per cent of the Australian population suffers from back pain

at any one time’, he said.”

continued...
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Question 5.4.11 (continued)

(e) (Courier mail, November 27, 2009)

“You fall in love, you get married, you have kids – or so the story

goes. Sadly, the statistics prove otherwise: one in eight couples

in Australia will have difficulty conceiving, and be classified ‘in-

fertile’. And while infertility usually falls into the category of

‘secret women’s business’ and is often perceived as a female prob-

lem, it is estimated that in Australia, infertility affects about one

in every 20 men. For half of all infertile couples, the problem lies

with the male partner, while in 40 per cent of infertile couples

using assisted reproduction technologies, the underlying reason

is male infertility. ”

(f) (www.abc.net.au) “Cliff Arnall, a health psychologist at the Uni-

versity of Cardiff, specialising in confidence-building and stress

management, told AFP the prediction was the result of some

gruelling mathematics. He says post-Christmas blues, the re-

turn to work after the holidays, mounting bills to pay for the

parties, the challenge of keeping New Year’s resolutions, the

slender prospects of fun in the weeks ahead and chilly winter

temperatures for those in the northern hemisphere all add up.

These factors, which he combined in a complex formula, came

out showing the Monday closest to January 24 [2006] would be

the most dismal of the year.”

continued...
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Question 5.4.11 (continued)

(g) (www.mentalhealth.org.uk) “The equation [by Cliff Arnall] cal-

culates that Monday 19 January 2009 is the worst day of the

year, when the Christmas glow has faded away, New Year’s res-

olutions have been broken, cold Winter weather has set in and

credit card bills will be landing on doormats across the land

whilst the January pay-cheque is still some way away. Blue

Monday was devised using the following mathematical equation:

(W + (D − d))× TQ

M ×Na

.

The model was broken down using six immediately identifiable

factors; weather (W ), debt (d), time since Christmas (T ), time

since failing our new years resolutions (Q), low motivational lev-

els (M) and the feeling of a need to take action (Na).”

(h) (www.msnbc.msn.com/id/6847012) “Arnall, who specializes in

seasonal disorders at the University of Cardiff, Wales, created

a formula that takes into account numerous feelings to devise

peoples’ lowest point. The model is:

(W + (D − d))× TQ
M ×NA

.

The equation is broken down into seven variables: (W ) weather,

(D) debt, (d) monthly salary, (T ) time since Christmas, (Q)

time since failed quit attempt, (M) low motivational levels and

(NA) the need to take action.”
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5.5 Space for additional notes
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6 Philosophy of science

Immanuel Kant was a real pissant
Who was very rarely stable.
Heidegger, Heidegger was a boozy beggar
Who could think you under the table.
David Hume could out-consume
Wilhelm Freidrich Hegel,
And Wittgenstein was a beery swine
Who was just as schloshed as Schlegel.

Artist: Monty Python

(www.youtube.com/watch?v=m WRFJwGsbY)
(rude word at time 1:10; song starts at 1:20)

The Philosopher in Meditation (1632), Rembrandt van Rijn (1606 – 1669), Musee
du Louvre, Paris. (Image source:
en.wikipedia.org/wiki/Image:Rembrandt - The Philosopher in Meditation.jpg)
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What is knowledge, and how is it different from belief?

I believe that Liverpool will win the FA Cup, I believe that I was born

in Walgett, and I believe that my four year old daughter is a child

genius. Do any of these beliefs count as knowledge? What conditions

would have to be met for them to do so? And when we do have

knowledge, when can it be said to be scientific?

Philosophy of Science involves broad conceptual and critical thinking

about the general nature and value of science. Sometimes a look at

the history of such thinking can provide a helpful perspective. We will

do just that in this module, focusing on the concept of knowledge. We

will explore three visions of scientific knowledge, each of which remains

relevant today.
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6.1 Knowledge – the Platonic Vision

Plato (428–348 BC) was a Greek philosopher who had a vision about the
difference between belief and knowledge, and for how knowledge should be
our rule of life in society, which he set out in his book The Republic. The
Greek word for belief is doxa. Plato believed that ‘right belief’, orthodoxy
in Greek, should rule society (for Plato, a city state) in the sense that we
should all hold and share the right beliefs about how the city should be
developed and governed. This commitment to orthodoxy is in contrast with
other Greek thinkers such as Protagoras (490–420 BC) and Hippocrates
(460–370 BC), who believed in heterodoxy, the flowering of multiple radical
or non-orthodox views. But Plato was aware of the dangers of mere
consensus. In Nazi Germany it was orthodox to believe that Jews are
inferior, but being a consensus view doesn’t make it right thinking. It was
important to which orthodoxy society subscribed: it must be based on true
knowledge. The Greek word for knowledge is episteme, from which we get
the word epistemology, the study of knowledge. The Latin translation of
episteme is scientia, from which we get the word science, although it had a
more general meaning, that is, knowledge.

According to Plato, ‘true knowledge’ is knowledge of unchanging truths,
the ultimate reality that lies behind the buzzing, changing world of our
experience. Our senses are not the means to gaining such knowledge,
rather, it is gained by conceptualising, ‘seeing in our mind’s eye’. The true
nature of a circle, or of justice, the results of geometry, and the ultimate
physical principles that explain our world, are only gained by the act of
conceptualising in our minds. Like Pythagoras (569–475 BC) before him,
Plato thought true reality is mathematical or mathematics-like.

Plato: “prove it”.
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Our senses, which reveal the buzzing, changing world, do not provide us
with true knowledge. They reveal the world of appearance. In his ‘Allegory
of the Cave’ (The Republic Book VII), Plato describes prisoners chained in
a cave, unable to turn their heads, so that all they can see is the wall of the
cave. Behind them burns a fire. Between the fire and the prisoners there
is a parapet, along which puppeteers can walk. The puppeteers, who are
behind the prisoners, hold up puppets that cast shadows on the wall of the
cave. The prisoners are unable to see these puppets, the real objects that
pass behind them, only shadows and echoes cast by objects Similarly, if all
we attend to is the world of our senses, we are like prisoners trapped in a
cave. To see beyond appearance we need to conceptualise eternal truths.

To attain such knowledge, those with sufficient aptitude need the right
education. Only those who attain this knowledge, episteme, are fit to
rule society. Plato called such people Philosopher Kings. In ruling, they
establish orthodoxy, to which the rest of society should subscribe, since the
latter are themselves incapable of much true knowledge.

Two good examples of Plato’s vision of knowledge are Euclid (325–270
BC) and Archimedes (287–212 BC). Euclid proved from “self-evident”
geometrical axioms and definitions various theorems such as ‘the angles
of a triangle make two right angles’. Archimedes proved from certain
axioms concerning levers, that two unequal weights balance at distances
from the fulcrum that are inversely proportional to their weights. Both
results involved conceptualising definitions, self-evident axioms, and proofs
based on those axioms. Philosophers call this type of reasoning deductive,
by which they mean an argument whose conclusion cannot be false if its
premises (axioms) are true. It was not Plato, but Aristotle (384–322 BC)
who set out a system of deductive logic, which remained the best of its kind
until the late nineteenth century.
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The Platonic vision had a powerful influence among some in the sixteenth
and seventeenth centuries, a period of time where many of what we know as
the traditional areas of science commenced in earnest, such as Newtonian
physics, chemistry, anatomy and astronomy. Rene Descartes (1596–1650)
held that true knowledge comes from having “clear and distinct ideas”,
and utilising those to prove deductively results from self-evident truths.
Descartes thought that true knowledge could not possibly be doubted.
Evidence of our senses, even of most obvious things like ‘this is my hand in
front of me’ could conceivably be doubted. I don’t know for certain that
I am not dreaming when I see my hand, or that I am not being tricked
by an evil demon into thinking I see my hand. Nevertheless, we can have
knowledge of the world around us by deductive reasoning. Mathematical
physics deals with quantities to which a number can be attached, and
mathematical relations between those quantities can be established beyond
doubt, on Descartes’ view.

Galileo (1564–1642) also held that mathematical physics enabled us to
establish true knowledge that takes us beyond the buzzing confusion of
the world of our immediate experience. Galileo clearly understood the
significance of idealisation when he wrote:a

Just as the Computer who wants his calculations to deal with
sugar, silk and wool must discount the boxes, bales, and other
packings, so the mathematical scientist when he wants to recognise
in the concrete the effects which he has proved in the abstract
must deduct the material hindrances, and if he is able to do so, I
assure you that things are in no less agreement than arithmetical
computations. The errors, then, lie not in the abstractness or
concreteness, not in geometry or physics, but in a calculator who
does not know how to make a true accounting.

The Platonic Vision was an emphasis, but it didn’t mean there was no place
at all for experiments. Descartes did a lot of experimental work on human
anatomy, and one of Galileo’s many contributions was to turn the telescope
on the stars to find that there are many more stars than previously thought.
But even so, Galileo was a theoretician, and even the experiments for which
he is famous were actually thought experiments, such as dropping objects
from the leaning tower of Pisa (to show that different objects of different
weights fall at the same speed). In theory, the approach of proving theorems
from self-evident axioms leaves you with theorems which can be tested in
experiment. But if you believe you already have certain knowledge of those
theorems, you would not feel any urgency to go and test them.
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Key point: the Platonic Vision of knowledge is of mathematical and logical
conceptualising, and proofs.

Notes:
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6.2 Knowledge – the Baconian Vision

Francis Bacon (1561–1626) has traditionally been credited as being the
‘father of modern science and technology’, who ‘has permanent importance
as the founder of modern inductive method and pioneer in the attempt at
logical systematisation of scientific procedure’. He did not share Galileo’s
and Descartes’ appreciation of the importance of mathematics in science,
but is famous rather for his vision for experimentation and application.

As suggested by the title of one of Bacon’s works (The New Organon,
his account of scientific method and logic was developed with the explicit
intention of replacing Aristotle’s system of deductive logic. There seems to
be a fundamental flaw in a purely deductive system, namely, the so-called
problem of premise regress. A valid argument tells me that if the premises
are true, then the conclusion must be true, but how do I know the premises
are true? I could have another deductively valid argument with the first
premise as the conclusion. But again, how do I know the premises are true?
This leads to a regress. How do we ever reach a starting point - premises
which are certainly true, on which knowledge can be built via deductive
inferences based on those certain truths? Euclid and Descartes were very
clear about what their answer to this problem was. The axioms must be
self-evident, beyond any possible doubt. But are there really any such
truths? One of Euclid’s axioms was that parallel lines never meet, but one
can derive a different geometry by dropping this assumption, and in fact
Einstein’s General Theory of Relativity suggests that our own space-time is
non-Euclidean in this way.

Bacon: “stick to the facts”.
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Bacon begins the preface to another work (The Great Insaturation) with
the manifesto:

“That the state of knowledge is not prosperous nor greatly
advancing, and that a different way must be opened for the human
understanding entirely different from any hitherto known.”

Bacon claimed that the whole scholastic scheme, with its Aristotelian
base, was not producing knowledge at all, as evidenced by the fact that
it never produced anything of practical benefit for humanity. He thought
of the scholastic university as an ‘ivory tower’, dominated by obscurantist
Aristotelian texts and deductive logic, and characterised by a disregard,
possibly derived from a Greek disdain for manual labour, for the hands-on
knowledge of things of the humble artisan. In the mechanical arts of, say,
the silversmith, Bacon saw genuine practical ability and knowledge of the
workings of nature.

So, how to attain this new knowledge? Bacon sets out three requirements.
The first is a willingness to discard all personal bias, and a desire to know
nature as it is, undistorted by theories and presuppositions. Bacon outlines
four ‘idols of the mind’; habits and ideas which corrupt our capacity for
knowledge. The ‘idols of the tribe’ are tendencies in human nature to accept
what we want to believe and what our raw senses tell us, when it suits us,
and to our own purposes. ‘Idols of the den’ are distortions that arise from
our particular perspective, ‘idols of the market-place’ are errors we pick
up from each other, often involving the abuse of words, and ‘idols of the
theatre’ are errors associated with grand theories such as Aristotelianism.

The second requirement is to collect all relevant data. In fact, the New
Organon was a small part of a scheme to produce one huge encyclopaedia of
nature incorporating all the available data of observation and experiment.
Towards the end of the New Organon, Bacon sets out the general plan
for what is to be included in this encyclopaedia. For example, suppose
we are studying heat and want to know everything about it, free from
bias and presupposition. The method involves formulating what Bacon
calls the ‘Tables of Investigation’. The first Table of Investigation is the
‘Table of Affirmation’, where everything that contains heat should be listed,
according to the ‘Rule of Presence’: the sun’s rays, blood that circulates
around the body, certain chemicals, iron after it has been in fire, chilli
peppers, and so on. In the second, the ‘Table of Negation’, everything that
does not contain heat should be listed according to the ‘Rule of Absence’:
the moon’s rays, the blood in a dead body, or chemicals which are cold. At
this point we can formulate a ‘Table of Comparisons’, in which the different
types of data are compared. The ‘Prerogative Instances’, are twenty-seven
ways in which something might stand out when we are studying a particular
case.
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For example, the ‘Solitary Instance’ is where two things are similar in
many ways, but different in just one way, while the ‘Glaring Instance’ is
where there is just one feature of a particular thing that is conspicuous; for
example, the weight of quicksilver. In the Preface to the New Organon, we
find a catalogue of 130 ‘Particular Instances’ by title, including the history
of the heavenly bodies, the history of comets, the history of air as a whole,
the history of sleep and dreams, the history of smell and smells, the history
of wine, the history of cements, the history of working with wood and so on.

Bacon’s third requirement concerns the method for deducing from this
collection of facts certain generalisations about nature; that is, scientific
laws. For example, in studying heat, we may discover the rule that metals
expand when heated. The process will be something like this:

This piece of iron expands when heated

This piece of iron expands when heated

This piece of copper expands when heated

This piece of copper expands when heated

This piece of bronze expands when heated

and so on.
Therefore all iron expands when heated

All copper expands when heated

All bronze expands when heated

and so on.
Therefore all metals expand when heated.

From sufficient observations of iron expanding we draw the conclusion that
all iron expands when heated. Then, from the observation that various
kinds of metals expand when heated, we conclude that all metals expand
when heated.

This method of simple enumeration is one kind of ‘inductive’, as opposed
to deductive, inference. The premises, particular observations, do not
guarantee the truth of the conclusion in the logical sense, since it is logically
possible for the premises to be true and the conclusion to be false. The
premises simply render the conclusion probable. The problem of premise
regress, however, is overcome, since the entire process is grounded in simple
particular observations, which, according to empiricism, are the root of all
knowledge. So by following the Baconian inductive method, we arrive at
generalisations from observation, that is, the laws of nature.
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Bacon believed that true knowledge always leads to practical application,
since true knowledge of nature gives us power over nature. (Of course, such
practical application may not be immediate.) If I understand metal to the
point that I know with certainty that heating a certain piece of copper will
cause it to expand, then that knowledge gives me power to control it. If I
want it expanded, I can heat it. If I do not, I can prevent it from being
heated. For example, suppose part of the deck of a ship is made from metal,
and I want to prevent expansion because that tends to warp the wood
which can cause leaking. I can prevent that expansion by preventing the
heating; for example, shielding the metal from the sun if that is the source
of heat. In this way Bacon thought that understanding of nature would
automatically lead to control of nature, with practical benefit. Knowledge
is power. As Bacon claims in the New Organon, in a rather self-satisfied
tone:

“I may hand over to men their fortunes, now their understanding
is emancipated and come, as it were, of age; whence there cannot
but follow an improvement in man’s estate and an enlargement of
his power over nature.”

In The New Atlantis, Bacon describes a utopia in which scientists work
hard to apply their knowledge to the improvement of the quality of human
life. Bacon cites three inventions as evidence that such a utopic vision
would be realised if his understanding of science were followed. The first is
the printing press, which aids the dissemination of knowledge, the second
is gunpowder, an obvious source of power, and the third is the compass,
which greatly improves navigation. For Bacon, these three inventions
demonstrated conclusively the capacity of scientific knowledge to give power
over nature. They lend support to the idea that if we pour our efforts
into true science, we will be rewarded with such technological advances,
which in turn improve the quality of life. Bacon’s optimistic view of human
achievement marks the early stages of a trend which dominated Western
thought right through until the early twentieth century.

Unlike Descartes and particularly Galileo, Bacon himself did not make
much progress with any actual scientific projects. He is seen rather as a
philosopher of the scientific method and its technology, who succeeded in
specifying the methodology and research program required for successful
science. It was not long, however, before the kind of scientific successes that
Bacon had hoped for did, in fact, occur. Eighty years after Bacon’s death,
his philosophy of science was adopted by the Royal Society in London,
which set itself up with the explicit aim of carrying out the work that Bacon
had envisioned, adopting him as a kind of patron saint. At their meetings,
the Royal Society reported on and discussed those experiments, collected
data, and so on. Society members included figures such as Boyle, Hooke,
and Harvey; in other words, many of the founders of modern science.
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Key point: According to the Baconian Vision true knowledge is derived
directly from observations and experiments, and will produce practical
benefit.
Notes:
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6.3 Knowledge – the Popperian Vision

Karl Popper (1902–1994) was an Austrian philosopher who fled Nazi Ger-
many for New Zealand, and later London. He opposed the Baconian vision
on a number of points. First, it doesn’t match much of scientific practice.
Scientists do not in general conduct experiments without preconceptions.
Usually they have a good idea of what they are looking for, and are selective
in the facts that they collect. No-one records the name of the cleaner or
the colour of the paint on the laboratory wall. Generally theories come
first, and the experiments which distinguish them from the alternatives
come along later. And second, Popper thought the very mechanism of
induction is dubious, as it falls short of a proof. Related to this is the
Problem of Induction, first pointed out by David Hume (1711–1776). This
is the problem that, while you can formulate a ‘Rule of Induction’ which
tells you to make generalisations in the right circumstances, you can never
prove this rule. It can’t be proved mathematically or logically, since it is
always logically possible that the next metal you observe, for example, will
not expand when heated even though previously all observations suggested
that it would. There is no logical contradiction to suppose it doesn’t. And
secondly, a Law of Induction cannot be proved by experiment, since that
proof would itself be an inductive generalisation. That would be to beg the
question. You may as well say ‘I know my crystal ball is a good predictor
because it tells me it is’. So it seems that the use of induction always has an
unproved assumption, that nature will continue working the way it always
has, as assumption Hume called the uniformity of nature.

Popper therefore proposed an alternative vision of how we come to scientific
knowledge. Science proceeds, he said, by conjectures and refutationsa.
Conjectures are the starting point. They are hypotheses, educated guesses
proposed for the purpose of being tested. In fact, the key thing about a
conjecture is that it must be falsifiable, able to be proved false. According to
Popper this is the mark of true science. Any claim that cannot be falsified
in principle is not scientific. For example, open today’s newspaper and read
your horoscope. It probably makes predictions about how your day will go.
Now try and think of a set of circumstances that could happen today which,
if they did happen, would refute the horoscope’s prediction. Often you find
this is very difficult, because the claim is not actually falsifiable. So it’s not
scientific, according to Popper. Popper was a trenchant critic of Marx and
Freud, claiming that their theories were meaningless because they were not
falsifiable. A theory is not scientific if it can explain everything, no matter
how things turn out.
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Popper: “prove me wrong, please”.

Scientific conjectures should be bold, and clearly able to be refuted. They
do not need to be unbiased in any sense. Thinking up bold and novel
hypotheses can be a very creative process, and can be prompted by all kinds
of things, such as in the case of August Kekule (1829–1896), who said he
discovered the ring shape of the benzene molecule after having a day-dream
of a snake biting its own tail.

Once one has a hypothesis, one can deduce the particular results that it
predicts, which are then able to be tested. This is not an inductive step,
it is deductive. The hypothesis ‘all metals expand when heated’ entails as
a matter of deductive certainty that a particular example of a metal being
heated will expand. So there is no problem of induction. Thus Popper’s
vision is of what is often called the hypothetico-deductive scientific method.

The second key to Popper’s vision is that if proved wrong the theory should
be immediately rejected. This is scientific progress. At least we know that
particular hypothesis is not right. The scientific attitude is to be able to
throw out a theory if it is proved wrong. But a theory or hypothesis can be
accepted if it survives all attempts to refute it.

Like Plato’s and Bacon’s visions, Popper’s vision has its critics. One
problem is that scientists in many areas are looking to test whole theories,
or in effect groups of hypotheses ‘joined together’. Then, if you refute the
group of hypotheses as a whole, the next question would be which part is
the part to be rejected. A second problem is that scientists do not always
throw out the theory just because there is a problem. If there is no better
theory available, it may be held onto, at least for the foreseeable future.
Just because a theory has a difficulty with one particular experiment does
not mean the theory gets thrown out immediately. And finally, if all we
ever have in science is unrejected hypotheses, where is the vision that we
ever come to true knowledge in science? On Popper’s account we can know
a theory is false, but we can never know it is true.
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One prominent critic of Popper is Thomas Kuhn (1922–1996), whose
book Structure of Scientific Revolutions was the most cited book in the
twentieth century. According to Kuhn, science goes through different stages
historically. There are periods of normal science, where scientists are
essentially puzzle solving, and periods of revolution, where everything is
thrown up in the air and completely new theories come to the fore. Normal
science is governed by a paradigm, which involves certain big theories such
as those of Newton, Einstein, or Darwin, together with methodological
assumptions, protocols and conceptual elements. Scientists from all around
the world work ‘together’ in that they subscribe to the paradigm.

To take a not-very intellectual example, unlike in Newton’s day, today
if one writes a scientific paper reporting the outcomes of experiments or
experimental studies, one should set out the method so that it can be
repeated. Only when the experimental result is reproduced two or three
times by independent groups working in different locations is the result
accepted as fact. But before it gets to that stage, the paper has to be
published in a reputable scientific journal and to achieve that it must
be peer reviewed, that is, approved by other (usually two) independent
scientists. This means normal science is conservative, tending not to accept
ideas and approaches that are too radical or unrecognisable from the
perspective of the paradigm. Thus to work in normal science you have
to be orthodox in Plato’s sense. Kuhn did not make these observations
in order to denigrate normal science. On the contrary, its conservative
nature enables scientists to get on with solving problems and exploring the
technological potential of the paradigm. Another feature of normal science
is that it permits anomalies, unresolved difficulties. We mentioned above
that scientists do not always throw out the theory just because there is a
problem. A paradigm can always tolerate a certain amount of anomaly.

However, if the number and the significance of anomalies become too
great, the paradigm can enter into a period of crisis, where the tenets
of the paradigm can be questioned. This is the beginning of a scientific
revolution. Alternative theories and methodologies emerge, and science
takes on a more heterodoxical look. Eventually, once one of these wins out
and a consensus emerges, we enter into another period of normal science
with a new paradigm. The new paradigm may be radically different from
the old one, to the point that Kuhn argued that successive paradigms are
incommensurable.

One advantage of Kuhn’s developmental approach to the nature of science
is that it draws our attention to the defeasible nature of scientific theories.
Even our best theories today may be overthrown down the track and
replaced by something we cannot even envisage from our perspective today.
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Key Points: According to the Popperian Vision, science proceeds by
falsifiable conjecture, and refutation. According to Kuhn, science proceeds
by periods of paradigm consensus, punctuated by the occasional radical
scientific revolution.
Notes:
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Question 6.3.1 Create your own glossary by writing down the

definitions of the following terms:

(a) Deductive proof

(b) Experiment

(c) Fact

(d) Hypothesis

(e) Hypothetico-deductive method

continued...
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Question 6.3.1 (continued)

(f) Induction

(g) Law

(h) Measurement

(i) Observation

(j) Theory
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6.4 Space for additional notes
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7 Introduction to Python programming
The coiling is fast
This time it’s your last
Your soul asphyxiated
Final chance for escape terminated.
Enveloped in python
constriction complete
where dreams become nightmares
of total defeat.

Artist: Torniquet
(www.youtube.com/watch?v=c107Aor329g)

Venus, Cupid, Folly and Time (1540 – 1545), Agnolo di Cosimo (usually known as
Il Bronzino) (1503 – 1572), National Gallery, London.
(Image source: en.wikipedia.org/wiki/Image:Angelo Bronzino 001.jpg)
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Introduction

Almost everyone is quite familiar with using computers to perform tasks,
like writing documents or looking up internet sites. Every such action
requires the computer to run a number of computer programs, each of
which was written in one of many computer languages, by one or more
programmers.

In science and many other disciplines you will sometimes need to use a
computer to solve a problem for which there is no program already written.
In such cases you will need to write a new program yourself.

Different computer languages are best suited for different tasks. Python is
a language that is becoming widely used in science, and is fairly easy to
use. In SCIE1000 we will cover introductory programming in Python. You
will learn how to design and write programs, investigate some of the most
useful programming concepts and constructs, and apply these in your own
programs.

We will cover programming in the context of an unsolved mathematical
research problem. You may well find this section to be difficult and confusing
at first, but you do not need to understand it all straight away. We will
keep returning to the programming concepts throughout semester, and you
will practise them extensively during tutorials.

Some of the examples/contexts we will discuss are:

• The Collatz conjecture.

Specific techniques and concepts we will cover include:

• Specifying, designing and writing programs.

• Python commands.

• Interpreting programs.

• Errors.
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7.1 Designing programs�

�

�

�

Software design

“Software is built on abstractions. Pick the right ones, and pro-

gramming will flow naturally from design, modules will have small

and simple interfaces, and new functionality will more than likely fit

in without extensive reorganization. Pick the wrong ones, and pro-

gramming will be a series of nasty surprises: interfaces will become

baroque and clumsy as they are forced to accommodate unantici-

pated interactions, and even the simplest of changes will be hard to

make. No amount of refactoring, bar starting again from scratch,

can rescue a system built on flawed concepts.”

From: Software Abstractions, by Daniel Jackson.

• Before starting to write a program, it is essential to have

clear specifications of what the program needs to do.

softwareindustrialization.com/content/binary/design.jpg
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• Once the problem has been specified, there are many approaches

to writing the program.

• One common technique is to use top-down design .

• This involves subdividing the problem into smaller or simpler

steps, and to continue breaking these into even smaller steps, until

they can directly be converted into lines of code.

• We will illustrate this with a non-computing task.

Example 7.1.1 In Question 9.3.3 we will consider a 2007 research

study on the likely impact of climate change on the distribution of

the bird species Catharus bicknelli (Bicknell’s thrush). As part of

this study, biologists required a practical way of collecting thrush

distribution data, based on temperature zones within habitats.

• Consider a top-down approach to designing the data collection

method for Example 7.1.1. First we have the program specifica-

tions.

Python Example 7.1.2

1 Estimate distribution of thrush according to temperature zones.

• If every line in the previous description is easy to implement in

practice, then the top-down design approach would stop.

• However, the total current habitat size for Bicknell’s thrush is

140,000 hectares; this is too large for exhaustive measurements, so

refinement of the approach is needed.

• The next stage splits the single step into four simpler steps.

Python Example 7.1.3

1 Identify different temperature zones in the habitat.

2 Select a representative sample of regions in the habitat.

3 Identify thrush distribution within the sample regions.

4 Extrapolate to the full habitat.
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• Again, any lines that are easy to implement do not need further

subdivision. In the next stage, Lines 2 and 3 have been split into

new Lines 2 to 5.

Python Example 7.1.4

1 Identify different temperature zones in the habitat.

2 Divide the habitat into regions 30 m square.

3 Decide how many squares are required to represent the habitat.

4 Choose that many squares at random.

5 Identify which squares contain thrush.

6 Extrapolate to the full habitat.

• In the next stage the language has been formalised, and Line 5 has

been split into Lines 5 to 8.

Python Example 7.1.5

1 Identify different temperature zones in the habitat.

2 Divide the habitat into regions 30 m square.

3 Decide how many squares are needed, say numRegion.

4 Choose numRegion squares at random.

5 for each chosen square in turn:

6 Record temperature in that square.

7 Conduct field trial in that square to search for thrush.

8 Record whether the square contained thrush.

9 Extrapolate to the full habitat.

• It is possible that further refinement is unnecessary, as each step

may be sufficiently simple. (We will assume that this is the case.)

• If not (for example, Line 6 may be too complicated to be imple-

mented) then further splitting can be undertaken.

• Essentially, the top-down approach is based on starting with a

simple description of the problem, then continually refining it into

smaller steps until all of the steps are easy to do. In computing,

this means they are easy to convert to programming commands.
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• As you write programs, you should always be guided by a number

of “good programming” principles.�

�

�

�

Good programming

There are many features of a “good” computer program. In general,

programs should be:

• correct;

• easy to read;

• easy to understand;

• simple;

• efficient; and

• thoroughly tested.

• To assist with achieving these goals, programs should:

– include blank lines and spacing to assist readability;

– have extensive comments to explain what is happening; and

– use meaningful names for variables and functions.

• Using top-down design and good programming principles will:

– make the initial programming job easier;

– make debugging and maintaining the program easier; and

– result in a program which is more likely to be correct.
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7.2 An unsolved mathematical problem

• We will continue our study of programming and Python in the

context of a specific mathematics research problem.

Case Study 6:

Collatz and his vexing conjecture

3x+1@home is a distributed non-profit project
trying to find high 3x+1 conjecture stopping
times. The 3x+1 conjecture is also known as
Collatz conjecture... You can participate by
downloading and running a free program on your
computer. http://www.allprojectstats.com/collatz/

• Many people understand what it means to do research in science:

we often see in the media that researchers have invented new

vaccines, isolated a previously unknown gene, discovered a new

planet or identified a previously undescribed insect.

• However, very few people understand what research in mathe-

matics entails. There is a perception that such research involves

“discovering new numbers or making up new equations”.
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Collatz and his vexing conjecture (continued)

• The Collatz conjecture (or “3x + 1 problem”) is an unsolved

research problem in number theory, which is a branch of pure

mathematics.

• (In mathematics, a conjecture is similar to a hypothesis. However,

conjectures are stronger than hypotheses, in that people believe

they are “very likely” to be true but cannot yet be proved.)

• Some mathematicians have spent most of their careers (unsuccess-

fully) trying to solve the Collatz conjecture.

• It is very easy to understand, but is exceedingly difficult (or

perhaps even impossible) to prove.

• There is no currently known practical application for the conjec-

ture.

• However, other results obtained using number theory have had no

known practical application for a long time, but then proved to be

crucial in unexpected ways.

• For example, Euclid’s division algorithm was discovered 2500 years

ago and thought to just be a mathematical curiosity.

• Its first important use was discovered only 30 years ago, and

now it underpins the encryption algorithms used in all secure

communication on the internet.

• Maybe an important use of the Collatz conjecture will be discovered

in 2500 years?

• We will use the Collatz conjecture as an introduction to Python

programming, so make sure you understand it.
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Collatz and his vexing conjecture (continued)�

�

�

�

Collatz conjecture (informal description)

Choose a positive integer (that is, a whole number greater than 0),

and apply the following process:

1. If the integer equals 1, stop.

2. If the integer is even then divide it by two; otherwise (the integer

must be odd) multiply it by three and then add one.

3. Return to Step 1.

The Collatz conjecture predicts that: regardless of which posi-

tive integer is chosen initially, this process will always ulti-

mately stop, with the result equal to 1.

• Of course, there is an unlimited number of possible choices for the

initial value.

• The conjecture has not been proved, so no-one knows whether the

claim (that the process always results in the number 1) is true or

false. However, it is easy to test with some small specific initial

values.

Example 7.2.1 Is the Collatz conjecture true for n = 10?

Answer: The following table shows the values arising during the

above process, starting with n = 10.

Step n (before) n is: Operation n (after)
1 10 even ÷2 5
2 5 odd ×3 + 1 16
3 16 even ÷2 8
4 8 even ÷2 4
5 4 even ÷2 2
6 2 even ÷2 1
7 1 1 stop

After six operations the process gives the value 1, so the Collatz

conjecture is true for the initial value n = 10.

SCIE1000, Section 7.2. Case Study 6: Collatz and his vexing conjecture Page 154



Collatz and his vexing conjecture (continued)

Question 7.2.2 With respect to the Collatz conjecture:

(a) Work through the process with an initial value of 6.

(b) How many times do you need to apply the process with an initial

value of 7 before you get to 1?

• Although the conjecture is yet to be proven true or false, most

mathematicians who have worked on it believe that it is true.

• It has been tested and found to be true for all starting values

less than or equal to about 1017. It is also known to be true for

infinitely many positive integers (for example, all powers of 2).

• Even though there is an impressive amount of data to suggest that

the conjecture is true, this data does not prove that it is true.

• Proving that a conjecture like this is true requires it to hold in

every case; to show that the conjecture is false, all that is needed

is a single case that does not hold (called a counter example).

• In the past there have been mathematical conjectures that are

true in very many cases, but have been falsified with a particular

choice of value.

• With their ability to check many cases rapidly, computers are

excellent tools to use in a search for counter examples.

End of Case Study 6.
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7.3 Computers and Collatz’s Conjecture

• The Collatz conjecture is a genuine example of a research problem

in which large computer searches have been used.

• We will work through a Python program which can be used to test

the Collatz conjecture on chosen initial values.

• This program is ideal for introducing you to some of the funda-

mental concepts you will require in order to develop models and

write programs applicable to your scientific discipline.

• (Even if you are not especially interested in the Collatz conjecture,

understanding exactly what it says and how it works will increase

your ability to follow what the program is doing, and hence learn

how to write your own programs.)

• First we define the specifications for the program.

Example 7.3.1 Write a Python program which:

• Asks the user to enter a positive integer.

• Proceeds through calculations of the Collatz conjecture, start-

ing with the given integer. At each step, the program must

print the step number and the current value.

• If the number has not become 1 within 10000 steps, print a mes-

sage and stop. Otherwise, print the number of steps required

for the integer to become equal to 1.

• The following stages illustrate a top-down design process for

writing this program.

• The first stage is a very high-level description of what the program

will do; it is essentially a repeat of the program specifications.
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Python Example 7.3.2

1 Input the initial value.

2 Repeatedly

3 Calculate next step until value=1 (or step limit exceeded)

4 Print a final message.

• The second stage involves splitting Lines 2 and 3 into new Lines

3 to 7 which are each simpler and more like computer language

commands.

Python Example 7.3.3

1 Input the initial value, say x.

2 Set a step counter equal to 0.

3 While the iteration has not finished:

4 If x is even then divide x by 2,

5 otherwise multiply x by 3 and add 1.

6 Print some output.

7 Add 1 to the step counter

8 Print a final message.

• The third stage involves splitting various lines into steps that

are even simpler and closer to the commands in a programming

language.

Python Example 7.3.4

1 Input the initial value, say x.

2 Set numSteps = 0.

3 While x is > 1 and the maximum number of steps is not exceeded:

4 If x is even then

5 Set x = x/2

6 otherwise

7 Set x = 3*x + 1

8 Print the step number and new value of x.

9 Set numSteps = numSteps + 1

10 Print a final message.
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• The above examples should be sufficient to give you an idea of how

top-down design proceeds in practise.

• To write the final version of this program, a number of additional

subdivision stages were required. We will not step through them

all here.

• The final version of the program is:

Python Example 7.3.5

1 from __future__ import division

2 from pylab import *

3

4 # This program investigates the Collatz conjecture, printing the

5 # sequence starting from a given initial value and stopping at 1.

6 # A message is printed if the value is not 1 within 10000 steps,

7 # steps, otherwise the number of steps is printed.

8

9 # The following function returns True if the given value is even,

10 # and returns False otherwise.

11 #

12 def isEven(x):

13 if x % 2 == 0:

14 return True

15 else:

16 return False

17

18 #

19 # Main Program.

20

21 x = input("Enter the initial Collatz value: ")

continued...
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Python Example 7.3.5 (continued)

22 # Initialise values.

23

24 maxSteps = 10000

25 numSteps = 0

26

27 # Apply steps until we reach 1 or exceed the step limit.

28

29 while x > 1 and numSteps < maxSteps:

30 if isEven(x):

31 x = x/2

32 else:

33 x = 3*x + 1

34 numSteps = numSteps + 1

35 print "After step ",numSteps," the value is ",x

36

37 # Print a final message.

38

39 if numSteps == maxSteps:

40 print "This did not become 1 within the step limit."

41 else:

42 print "The initial value became 1 after ",numSteps," steps."

• You will have the opportunity to improve your programming skills

in tutorials and assignments.

• We will mostly write relatively short programsm in SCIE1000.

• If you wish to develop additional programming expertise then you

might like to study a programming course in Computer Science.
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Python Example 7.3.6

The output that arises from executing the program with initial

value 10 is:

1 Enter the initial value for the Collatz conjecture: 10

2 After step 1 the value is 5.0

3 After step 2 the value is 16.0

4 After step 3 the value is 8.0

5 After step 4 the value is 4.0

6 After step 5 the value is 2.0

7 After step 6 the value is 1.0

8 The initial value became 1 after 6 steps.

Python Example 7.3.7

The output that arises from executing the program with initial

value 22 is:

1 Enter the initial value for the Collatz conjecture: 22

2 After step 1 the value is 11.0

3 After step 2 the value is 34.0

4 After step 3 the value is 17.0

5 After step 4 the value is 52.0

6 After step 5 the value is 26.0

7 After step 6 the value is 13.0

8 After step 7 the value is 40.0

9 After step 8 the value is 20.0

10 After step 9 the value is 10.0

11 After step 10 the value is 5.0

12 After step 11 the value is 16.0

13 After step 12 the value is 8.0

14 After step 13 the value is 4.0

15 After step 14 the value is 2.0

16 After step 15 the value is 1.0

17 The initial value became 1 after 15 steps.

SCIE1000, Section 7.3. Page 160



7.4 Dissecting the program

• In the next few pages we will summarise some of the key concepts

illustrated by the program.

• The contents of the program may at first be confusing, but in

tutorials we will discuss in detail each of the major programming

ideas. Also, your Python handbook provides a lot of extra

information.

Example 7.4.1 If you have never seen a program before, you will

immediately notice that:

• The program contains lines of computer commands, some of

which also make some sense to a human reader – you can prob-

ably work out what some lines will do.

• Some lines look like they are messages or comments.

• Some lines are indented, and others are blank.

• Some lines look fairly mathematical.

Python Example 7.4.2

The top of the program.

1 from __future__ import division

2 from pylab import *

• When a program runs, the basic rule is that each line of code is

executed in turn, from the top and working downwards. (This

basic rule is modified by some commands within the program,

particularly functions, loops and conditionals.)

• Thus, the Python programs starts by executing Line 1.

• Lines 1 and 2 tell Python to ‘load in’ libraries of useful com-

mands, used later in the program. The library in Line 1 is

called future , and the library in Line 2 is called pylab.
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Python Example 7.4.3

Comments.

3

4 # This program investigates the Collatz conjecture, printing the

5 # sequence starting from a given initial value and stopping at 1.

6 # A message is printed if the value is not 1 within 10000 steps,

7 # steps, otherwise the number of steps is printed.

• Line 3 is blank, simply to make the program more readable.

• Lines 4 to 7 commence with a # character, which means that

they are comments explaining what the program does to a

person who reads the code. Python ignores comments.

Python Example 7.4.4

Functions.

12 def isEven(x):

13 if x % 2 == 0:

14 return True

15 else:

16 return False

• The def command tells Python that Lines 12 to 16 are defining

a function called isEven.

• The lines of code within a function are not executed now, but

instead can be called later in the program by using the name

of the function.

• The function isEven takes one input value (called x), and gives

an output value indicating whether or not x is even.

• The % command gives the remainder when x is divided by 2;

a number x is even if the remainder equals 0.
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Python Example 7.4.5

The input command.

19 # Main Program.

20

21 x = input("Enter the initial Collatz value: ")

• Line 19 is a comment, showing a reader where the main part

of the program starts.

• Line 21 prints a message prompting the user for some input,

and then waits for a value to be typed at the keyboard. This

value is placed into a variable called x, which can be used later

in the program.

Python Example 7.4.6

Initialising variables.

24 maxSteps = 10000

25 numSteps = 0

• Lines 24 to 25 assign some initial values to variables called

maxSteps and numSteps.

• Assigning the value to a variable makes the program easier tol

modify in the future.
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Python Example 7.4.7

The while command.

29 while x > 1 and numSteps < maxSteps:

30 if isEven(x):

31 x = x/2

32 else:

33 x = 3*x + 1

34 numSteps = numSteps + 1

35 print "After step ",numSteps," the value is ",x

• Line 29 is the start of a loop within the program.

• Python uses indentation to show the body of the loop; that is,

the lines that form the loop. Line 35 is the last line within the

body of the loop.

• In general, the order of executing lines of code within a program

is from top to bottom.

• Loops change this basic order. Lines within a loop are executed

zero or more times, while some condition is satisfied.

• Line 29 gives a condition that must be satisfied for the loop to

execute: you can see that Python allows commands like and.

• Line 29 should make sense: lines in the loop body (Lines 30

to 35) will be executed in turn, from top to bottom, while the

value of the variable x is greater than 1 and also the value of

numSteps is less than the value of maxSteps.
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Python Example 7.4.8

The if command.

30 if isEven(x):

31 x = x/2

32 else:

33 x = 3*x + 1

• Lines 30 to 33 contain a conditional statement.

• In Line 30, the program calls the function named isEven

which was defined in Lines 12 to 16. This function determines

whether or not the value of x is even, and returns the value

True or False.

• The if command in Line 30 tells Python to execute Line 31

if x is even. The else command in Line 32 tells Python to

execute Line 33 otherwise (that is, if x is odd).

• Think about the Collatz conjecture: these lines make sense!

Python Example 7.4.9

Updating the value of a variable.

34 numSteps = numSteps + 1

• Line 34 is a very common programming construct, which may

be confusing.

• The right hand side of the = sign is evaluated first. That is,

the value of the variable numSteps is found, then 1 is added to

that value.

• Then the left hand side is used; the new value is assigned to

the variable numSteps.

• The final result of Line 34 is that the variable numSteps will

be given a value one more than its previous value.
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Python Example 7.4.10

The print command.

35 print "After step ",numSteps," the value is ",x

• Line 35 is a print command, which displays the step number

and current value to the screen. All programs should produce

sufficient output.

Python Example 7.4.11

The print command.

37 # Print a final message.

38

39 if numSteps == maxSteps:

40 print "This did not become 1 within the step limit."

41 else:

42 print "The initial value became 1 after ",numSteps," steps."

• Lines 39 to 42 display the final output to the screen, depending

on whether or not the value became 1.

• Line 39 tests whether the number olf steps equals the maximum

number of steps. The Python if command tests for equality

using two equals signs, ==.

• If the value did not become 1 then a message is printed in Line

40, otherwise the number of steps is printed in Line 42.
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7.5 Errors
• The consequences of software errors can be quite serious.

Example 7.5.1 In Example 4.1.1 we noted that in 1999 the Mars

Climate Orbiter crashed into Mars as the result of a software error

in relation to the units on some calculated values.

Example 7.5.2 (From: news.bbc.co.uk, Tuesday, 9 February 2010)

Toyota in global recall of Prius

“Toyota has announced the recall of about 436,000 hybrid vehi-

cles worldwide, including its latest Prius model, to fix brake prob-

lems. . . ‘We have decided to recall as we regard safety for our cus-

tomers as our foremost priority,’ the firm said. . . The Prius was

Japan’s top-selling car in 2009 and the world’s most popular hy-

brid model.

Peter De Lorenzo, author of the book The United States of Toyota,

told the BBC that the latest recall would be particularly painful for

the company. ‘The Prius is their shining example of their vision of

what we should all be driving and it is everything the new Toyota

represents. So for them to have to acknowledge a recall of hundreds

of thousands of them is a tremendous blow to their image,’ he said.

Credit rating agency Moody’s said it had put Toyota’s credit rating

on review for a possible downgrade. . . Toyota’s president has come

under criticism from Japan’s transport minister Seiji Maehara for

not reacting quickly enough to recall faulty vehicles. ‘I wish you

had taken measures earlier rather than simply saying it was not a

major technical problem,’ Mr Maehara told Mr Toyoda in a meeting.

Mr Maehara said he would meet US ambassador John Roos on

Wednesday to discuss the situation. ‘Recalling defective products

is important, but each country needs to consider how to prevent

this from becoming a diplomatic problem’. . .

There have been complaints in Japan and the US that the brakes

momentarily fail when driven on rough or slippery road surfaces.

Toyota blames a software glitch. . . ”
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• Even the best and most experienced computer programmers will

sometimes (even often) make errors (bugs) in their programs.

• A key skill in programming is minimising the number of errors,

and then identifying and fixing any that occur.

• There are many different types of error, including incomplete

problem description, design faults in the software, unanticipated

‘special cases’, coding errors, logic errors and miscommunications

within teams of programmers.�

�

�

�

Testing and debugging

Most newly written programs include errors, and it is important to

adopt a systematic approach to identifying and fixing them. This

process is often called testing and debugging.

There are many types of programming error; some will be easy to

find (like a missing bracket), some will result in error messages (like

trying to divide by zero), but in many other cases the program will

produce incorrect output without an error message.

To find such errors, you will need to test your program with differ-

ent input values, and check the output by hand. Testing is a very

important part of the overall programming process!�

�

�

�

Avoiding errors

When writing programs, make sure that you:

• understand the specifications before starting;

• think about the best and most logical way to solve the problem;

• consider planning your program on paper first;

• put comments in your program so you (and others) know what

you are trying to do;

• test your programs on a range of data;

• check some output carefully to make sure it is correct; and

• pay attention to any error messages!
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�

�

�

Error messages are your friends!

If Python gives you error messages, make sure you use them in the

correct ways:

• do not ignore them: they give useful advice about what is going

wrong;

• do not be scared of them;

• think about what they are saying;

• make full use of all of the information they give; and

• think about how you fixed similar errors in the past.

Python Example 7.5.3

Here is an example of a Python program with an error:

1 from __future__ import division

2 from pylab import *

3

4 a = input(’Tell me a number: ’)

5 b = input(’Tell me another number: ’)

6

7 c = a + b

8 d = a * bb

9

10 print a, ’+’, b, ’=’, c

11 print a, ’x’, b, ’=’, d

Here is the output from running the program:

1 >>>

2 Tell me a number: 8

3 Tell me another number: 7

4

5 Traceback (most recent call last):

6 File "example.py", line 8, in <module>

7 d = a * bb

8 NameError: name ’bb’ is not defined
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• The error message gives the following information:

1. The last line of the error message (Line 8 above) identifies what

the type of error is, in this case:

NameError: name ’bb’ is not defined

2. The second line of the error message (Line 6 above) shows

where the error was detected.

File "example.py", line 8, in <module>

This indicates the file and line in which the error occurred.

Examine the identified line of the program and look carefully

for a mistake. In this case, in Line 8 of the program the

programmer has accidentally typed ‘bb’ instead of ‘b’.

• If a program contains multiple errors, Python will display the

message for the first one it encounters.

• After fixing that error, a different error message may appear. This

is usually a good sign: it means that the first error is fixed, and

you can move on.�




�

	

Common errors

Here are some common error messages and possible causes.

• SyntaxError The command is not understood by Python. Per-

haps:

– your brackets are incorrect (such as ( ) instead of [ ]);

– you have forgotten a bracket; or

– your indentation is incorrect.

• NameError There is no variable with the given name. Perhaps:

– you have mistyped the name of a variable; or

– you have forgotten to set a starting value for a variable.

• ImportError A module to be imported does not exist. Perhaps

you mistyped the name of the module to import.

• OverflowError The answer is too large or too small to calculate.

• ValueError One of the arguments you have given is not valid

for this function.
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7.6 Space for additional notes
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8 Progress Report 1

• As we work through SCIE1000, it is useful to take the time to

consider the course as a whole.

• Students sometimes feel that the course content “jumps around”,

however we are aiming to build an overall cognitive framework for

learning and doing science.

Where are we up to?

• So far we have:

– presented a broad overview of the nature of science, and the

various activities which comprise science;

– explained how SCIE1000 and your other courses fit into this

framework;

– identified the importance of modelling, and the five common

ways of presenting models;

– introduced some basic science knowledge;

– discussed the importance of quantitative communication;

– analysed the philosophical nature of science and scientific

thought, including hypotheses; and

– described how computer programs and Python can be used to

model phenomena.

• By now, you should have a reasonably solid understanding of the

basis of scientific activities and thought processes, and the role

that modelling plays in science.

• In the first lecture we outlined six classes of activity crucial to the

scientific process, and we estimated how much of each activity is

represented in SCIE1000 (and in some other courses).

• The following table outlines this information, and what we have

covered so far in SCIE1000.
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Skill/Activity Overall Done so far

Scientific discipline knowledge 5% 3%

Scientific thinking and logic 15% 12%

Communication and collaboration 15% 10%

Curiosity, creativity, persistence 15% 5%

Observation and data collection 0% 0%

Modelling and analysis 50% 5%

How does it link together:

• In Chapter 2 we built an overall picture of different skills,

approaches and thought processes required to do science.

• In Chapter 6 we refined this, considering the nature of logical,

scientific thought.

• In Chapter 4 we covered some basic scientific knowledge, setting

the scene for future in-depth study of phenomena.

• In Chapter 5 we discussed the importance of precision, accuracy,

honesty and scepticism when communicating quantitative scientific

information, and when collecting, analysing and using data.

• In Chapter 3 we considered the role of modelling in simplifying

reality whilst also maintaining relevance and sufficient accuracy.

• In Chapter 7 we demonstrated how writing computer programs

allows more sophisticated models to be developed, because of their

ability to perform calculations rapidly.
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What we will do next:

• For most of the rest of semester we will focus on modelling and

analysis. In the next three chapters we will:

– remind you of mathematical functions and their uses;

– encounter functions which are: linear, quadratic, power,

periodic, exponential and logarithmic;

– see that these functions can be used to model phenomena in a

diverse range of scientific areas;

• We will study all of these topics through authentic and important

scientific contexts.

• Do not attempt to memorise details of particular contexts or

mathematical approaches.

• Instead, understand when and how each technique can be applied,

and how to decide which is the most appropriate to use.

• We will also see examples of how Python programs can assist with

the modelling process.
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9 Climate, species and functions

We are a rock revolving around a golden sun
We are a billion children rolled into one
So when I hear about the hole in the sky
Saltwater wells in my eyes.
We climb the highest mountain, we’ll make the desert bloom
We’re so ingenious we can walk on the moon
But when I hear of how the forests have died
Saltwater wells in my eyes.

Artist: Julian Lennon

(www.youtube.com/watch?v=GzvjuMkAEEU)

The Deluge (1508 – 1512), Michelangelo (1475 – 1564), Sistine Chapel ceiling,
Apostolic Palace, Vatican.

(Image source:
commons.wikimedia.org/wiki/Image:The Deluge after restoration.jpg)
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Introduction

As we saw earlier, scientific models allow us to simplify reality while
still making useful inferences and predictions about events and processes.
We also noted that in modern science, many models are fundamentally
quantitative because they are based on identified frequencies, patterns and
relationships between various values. Models are commonly presented in
five ways: words, values, pictures, equations and computer programs. In
the next few chapters we will consider in detail how equations can be used
to represent models.

The mathematical concept that allows patterns to be quantified is the
function. Essentially, a function is a rule that takes some input (such as
a collection of factors that impact on the phenomenon being modelled),
applies the rule to the input, and gives a corresponding output. This output
is typically compared with reality, testing the accuracy of the model.

You will need to be familiar with a variety of functions, know how to
manipulate and apply them, and decide which are likely to be most
appropriate in differing situations.

Some of the examples/contexts we will discuss are:

• The Keeling curve and CO2 concentrations in the atmosphere.

• Temperature and measurement scales.

• Bicknell’s thrush and climate change.

• Species-area curves and biodiversity.

• Wind chill.

Specific techniques and concepts we will cover include:

• Definition of a function.

• Linear functions.

• Quadratics and power functions.
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9.1 Introduction to functions

Case Study 7:

Atmospheric CO2 and the Keeling
curve

• Scientifically, it is widely accepted that:

– Earth is undergoing a period of rapid climate change;

– global temperatures are likely to rise rapidly over coming years;

– this warming is related to increasing concentrations of carbon

dioxide in the atmosphere; and

– the increase in atmospheric CO2 concentration is a result of

human activity.

• There is a famous, long-running study measuring the change in

atmospheric CO2 concentrations over time.
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Atmospheric CO2 and the Keeling curve (continued)

Example 9.1.1 The Scripps Institution of Oceanography is based

in San Diego, USA. Their website includes the following:
“Charles David Keeling directed a program to measure the con-
centrations of CO2 in the atmosphere that continued without
interruption from the late 1950s through the present. This pro-
gram, operated out of Scripps Institution of Oceanography, is
responsible for the Mauna Loa record, which is almost certainly
the best-known icon illustrating the impact of humanity on the
planet as a whole....”

This graph is called the Keeling curve.

continued...
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Atmospheric CO2 and the Keeling curve (continued)

Example 9.1.1 (continued)

• This study has continuously measured atmospheric concentra-

tions of CO2 at the Mauna Loa observatory in Hawaii for around

50 years.

• Gases in the atmosphere mix fairly well, so this measurement is

considered as representative of the atmospheric CO2 concentra-

tion world-wide.

• The current level is around 380 parts per million by volume

(ppm or ppmv).

• Other data from ice-core samples shows that long-term CO2

levels for thousands of years have remained relatively constant

at 280 ppm, but started increasing in the 19th century.

Question 9.1.2 With reference to the Keeling curve shown in

Example 9.1.1:

(a) Describe the main features of the graph.

(b) What physical factor(s) could cause those features?

End of Case Study 7.
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• Mathematics is the language commonly used to describe quantita-

tive relationships and patterns.�

�

�

�

Functions

In mathematics, a function is a rule which converts input value(s)

to output values. If f is the name of a function, then f(x) denotes

the output that arises from applying the function f to the input x.

• A key skill in modelling is recognising which type of function is

likely to best represent the observed data.

• In the next few sections we will study some phenomena and see

how a range of useful mathematical functions allow us to represent

and study these phenomena.

• It is not important that you memorise specific details about the

particular case studies (such as the scientific name of Bicknell’s

thrush or the formula for wind chill).

• Instead, understand the concepts behind the examples, including

which functions should be used to model which type of phenomena,

and how to interpret mathematics in a scientific context.

• One point we will continually stress is the diversity of phenomena

which can be modelled by the same (or very similar) functions.

9.2 Linear functions�

�

�



Linear function

Linear functions have equations y(x) = mx+ c , where m and c are

constants. Graphs of linear equations are straight lines.

Linear functions are useful for modelling phenomena in which the y

value changes by the same amount for each given change in x value,

irrespective of the x value.
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Case Study 8:

Temperature

Question 9.2.1 A temperature of c degrees Celsius can be con-

verted to an equivalent temperature on the kelvin scale by the func-

tion
K(c) = c+ 273.15.

A graph of this function is:

continued...
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Temperature (continued)

Question 9.2.1 (continued)

(a) The United States is one of the few countries in the world to

use the Fahrenheit scale as their standard. A temperature c in

degrees Celsius can be converted to Fahrenheit by the function

F (c) =
9c

5
+ 32.

Derive a function that converts a temperature f in Fahrenheit

to an equivalent temperature k in kelvin.

(b) The highest temperature ever recorded on Earth was 160 degrees

Fahrenheit, in Libya in 1922. Convert this to degrees Celsius and

also to kelvin.

continued...
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Temperature (continued)

Question 9.2.1 (continued) Recall that

K(c) = c+ 273.15 and F (c) =
9c

5
+ 32.

(c) Find the temperature(s) at which the Fahrenheit and Celsius

scales give the same reading.

(d) Find the temperature(s) at which the Fahrenheit and kelvin

scales give the same reading.

(e) Find the temperature(s) at which the Celsius and kelvin scales

give the same reading.

Then we can develop a computer model.

Program specifications: Write a program which allows the user to

convert a temperature from Celsius to Fahrenheit, or Fahrenheit to

Celsius.
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Temperature (continued)

Python Example 9.2.2

1 # A program to convert between Celsius and Fahrenheit

2 from __future__ import division

3 from pylab import *

4 origTemp = input("What is the original temperature? ")

5 choice = input("Type 1 to convert C -> F, or 2 for F -> C: ")

6

7 if choice == 1:

8 # C-> F

9 newT = origT * 9 /5 + 32

10 newT = round(newT,1)

11 print origT," Celsius is approximately",newT,"Fahrenheit."

12 else:

13 # F-> C

14 newT = (origT - 32) * 5 / 9

15 newT = round(newT,1)

16 print origT," Fahrenheit is approximately",newT,"Celsius."

Python Example 9.2.3

Here is the output from running the above program three times:

1 What is the original temperature? 0

2 Type 1 to convert C -> F, or 2 for F -> C: 1

3 0 Celsius is approximately 32.0 Fahrenheit.

4

5 What is the original temperature? -40

6 Type 1 to convert C -> F, or 2 for F -> C: 2

7 -40 Fahrenheit is approximately -40.0 Celsius.

8

9 What is the original temperature? 160

10 Type 1 to convert C -> F, or 2 for F -> C: 2

11 160 Fahrenheit is approximately 71.1 Celsius.

End of Case Study 8.
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9.3 Functions with other powers

• As we just saw, the relationships between equivalent temperatures

in Celsius, kelvin and Fahrenheit are all linear, so the highest

power of any variable in the equation is 1.

• Many quantities in science are related linearly, but other quantities

relate in different ways. One such relationship is to have powers

that are not equal to 1.

• We will first study an example in which the power is 2 and then

some examples in which the power is between 0 and 1.

�

�

�



Quadratic function

Quadratic functions have equations

y(x) = ax2 + bx+ c,

where a, b and c are constants and a 6= 0. The graph of a quadratic

is a parabola.

Example 9.3.1 Here are the graphs of two quadratic equations

for x between −2 and 5.:

� � ��� � � � � � � �
	

��� �

���
�

� �

�

�

�
�

�

����������������������

SCIE1000, Section 9.3. Page 185



Case Study 9:

Climate change and Bicknell’s thrush

Example 9.3.2 A papera gives a model of the distribution of birds

at various altitudes and temperatures in locations in North East

USA, and then uses their models to predict the likely impact of rising

temperatures on these distributions. Part of their study focused on

Bicknell’s Thrush, Catharus bicknelli.

• Collecting data for this study involved the following process

(which we saw earlier in Example 7.1.1):

– Subdividing the region being studied into rectangular cells

each 30 m square;

– Classifying each cell according to the mean July (summer)

daily maximum temperature in that cell (this temperature

in general was proportional to the altitude of the cell);

– Conducting fieldwork on a representative sample of cells to

determine which cells were thrush-positive (that is, contained

at least one resident thrush).

continued...

aRodenhouse et al., Potential effects of climate change on birds of the north-
east, Mitigation and Adaptation Strategies for Global Change, 13 (2008) 487–
516
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Climate change and Bicknell’s thrush (continued)

Example 9.3.2 (continued)

• Data was used to estimate the proportion of cells with each

maximum temperature which are thrush-positive.

• This process resulted in a model of thrush distribution across

their habitat based on temperatures within that habitat.

The following diagram shows an example of a partial data set that

could have been collected:
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The study found that no significant thrush habitats possess July

temperatures outside the range 9.3 ◦C to 15.6 ◦C.

After conducting statistical analysis on their data, the researchers

showed that the proportion p(t) of thrush-positive cells is closely

modelled by the quadratic function

p(t) = −0.0747t2 + 1.8693t− 10.918

where t is a temperature in ◦C, between 9.3 ◦C and 15.6 ◦C.
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Climate change and Bicknell’s thrush (continued)

Question 9.3.3 The graph of p(t) = −0.0747t2 + 1.8693t− 10.918

is:

(a) What is the probability that a thrush will be found in a sample

area in which t = 11 ◦C?

(b) From the graph, at what (approximate) value of t are these

thrush most densely distributed, and what is the (approximate)

value of p(t)?

(c) There is no value of t for which p(t) = 1. Explain (in words)

what this means in terms of the thrush, and give a reason why

it would happen.

continued...
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Climate change and Bicknell’s thrush (continued)

Question 9.3.3 (continued) Average temperature rises in this re-

gion over the next century are predicted to range from 2.8 ◦C under

a low greenhouse gas emission scenario, to 5.9 ◦C under a high emis-

sion scenario.

Recall that the graph of p(t) = −0.0747t2 + 1.8693t− 10.918 is:

(d) How would this graph change if the average temperature rose

by 2.8 ◦C? What if it rose by 5.9 ◦C? Explain your answers.

(e) What key factor relevant to the thrush would change if there

were a substantial rise in average temperatures?

continued...
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Climate change and Bicknell’s thrush (continued)

Question 9.3.3 (continued) Consider the following measured areas

of existing thrush habitat, and the predicted areas remaining after

possible temperature rises over time.

Scenario habitat (hectares)

(current) +0◦C 140000

+1◦C 32000

+2◦C 10000

+3◦C 1000

+4◦C 200

+5◦C 75

+6◦C 0

(f) Draw a rough graph of the habitat size as a function of change

in temperature.

(g) Give some physical reasons why your graph has this shape.

continued...
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Climate change and Bicknell’s thrush (continued)

Question 9.3.3 (continued)

(h) What is the likely impact on the thrush population of a temper-

ature rise of 2.8 ◦C?

(i) What is the likely impact on the thrush population of a temper-

ature rise of 5.9 ◦C?

(j) What survival strategies are there for the thrush if there is an

increase in temperature at the higher end of predictions?

There are many other examples of species at risk from climate change.
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Climate change and Bicknell’s thrush (continued)

Example 9.3.4
Antarctic beech (Nothofagus moorei)

is a temperate rainforest tree species

found in isolated locations in South

East Queensland (Lamington and

Springbrook National Parks), and

northern New South Wales. They can

live for several thousand years.

This species tends to occur only at the

highest points of mountains, particu-

larly at the northern extremes of its

distribution. Rapid climate change will

probably result in local extinction.

Question 9.3.5 Scientists often need to estimate the abundance of

something that is difficult to measure. One approach is to extrapo-

late from a sample; the tag and release method is an example.

Melanie the marine biologist wants to estimate the number of fish

N living on an isolated reef. She captures a sample of S1 fish, tags

them and releases them. One week later, she collects another sample

of size S2 and finds S3 tagged fish amongst them. Assuming the

population size has not changed, develop a formula to estimate N .

End of Case Study 9.
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Case Study 10:

Species-area curves and biodiversity

• The previous case study discussed the abundance and distribution

of individual species. Ecologists often study the overall number of

species found in a region (sometimes called the region’s biodiversity

or species diversity).

• Species diversity is often modelled using mathematical functions

with powers other than 1 (linear) and 2 (quadratic).

• Rather than undertaking a full species count over the entire region,

data from a sample can be extrapolated to cover the entire region.

• This can be used to estimate the abundance of all species, or of

species satisfying a particular property, or even of the number of

individuals showing certain characteristics.
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Species-area curves and biodiversity (continued)

Example 9.3.6 Peter lives on 4 hectares in eastern Brisbane. He

wishes to estimate the number of distinct, naturally occurring, na-

tive plant species with individuals more than 2 m in height which

occur on his land.

He divides his land into cells of 10 m square, randomly selects ten

cells, and records the locations of individual plants within those cells.

The following diagram shows his data sheets (species are shown on

the next page.)

continued...
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Species-area curves and biodiversity (continued)

Example 9.3.6 (continued) The following table collates the

species data collected in Example 9.3.6.

The table shows:

• the cell number, from 1 to 10;

• the number of additional species identified in that cell;

• the names of the additional species identified in that cell; and

• the cumulative total C of species identified in this and previous

cells.

Note that each species is recorded (and counted) only once.

Num.
Cell new sp. New species C

1 6 Eucalyptus racemosa, Acacia fimbriata, 6
Banksia integrifolia, Corymbia intermedia,
Allocasuarina littoralis, Ficus obliqua

2 4 Eucalyptus tereticornis, Alphitonia excelsa, 10
Corymbia trachyphloia, Breynia oblongifolia

3 4 Acacia disparrima, Eucalyptus propinqua, 14
Casuarina cunninghamiana, Grevillea robusta

4 4 Acacia leiocalyx, Lophostemon suaveolens, 18
Melaleuca linariifolia, Eucalyptus crebra

5 2 Banksia robur, Melaleuca quinquinerva 20
6 1 Glochidion sumatranum 21
7 0 − 21
8 1 Petalostigma pubescens 22
9 0 − 22

10 1 Angophora leiocarpa 23

• Using the above information, it is possible to draw a graph of

the number of distinct species recorded versus the number of cells

surveyed.
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Species-area curves and biodiversity (continued)�

�

�

�

Species-area curves

In ecology, a species-area curve is a graph showing

the number of distinct species observed in a particular environment,

as a function of the size of the area surveyed.

Example 9.3.7 The following graph is a species-area curve show-

ing the data in Example 9.3.6:

• The graph has a shape that is typical of many species-area curves:

the number of distinct species initially rises rapidly as the area

increases, but then rises less rapidly as the area becomes larger.

• In this case, Peter collected additional data (not shown in the

graph) to investigate what happened as he surveyed a larger area.

– after 20 cells were surveyed, the total number of species

identified was 25 (so the total only increased by two compared

to his survey of 10 cells).

– After 50 cells were surveyed, the total number of species

identified was 28 (so a further increase of only three).

• Mathematically, species-area curves (and similar phenomena) are

often modelled using power functions .
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Species-area curves and biodiversity (continued)#

"

 

!

Power functions

Power functions have equations

y(x) = axp

where a and p are constants. (Note that the power p does not need

to be an integer.)

Changing the value of the power leads to graphs with different

shapes. If the power is:

• 0, then the graph is a horizontal line;

• between 0 and 1 then the graph

increases less rapidly as x gets larger;

• 1, then the graph is a straight line ; and

• greater than 1 then the graph

increases more rapidly as x gets larger.

Example 9.3.8 The graphs of y1 = x0.5 and y2 = x2 are shown

in the figure below. The differences in their shapes mean that they

are suitable for modelling different phenomena.

y2

y1
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Species-area curves and biodiversity (continued)�

�

�

�

Equations for species-area curves

Species-area curves are most often represented using power func-

tions, with power p between 0 and 1.

Their general form is S(a) = Cap, where S is the number of species

occurring as a function of the area a, and C and p are constants

depending on the geographical location, resource availability and

biological diversity of that environment.

Question 9.3.9 With respect to a species-area curve S = Cap:

(a) Why do species-area curves have that general shape?

(b) Describe some physical features that would make the values of

C and p smaller or larger.

(c) What ramifications does the shape of species-area curves have

for sampling techniques?
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Species-area curves and biodiversity (continued)

Example 9.3.10 The graph of f(x) = 14x0.2 is shown in the

following figure, along with the species data from Example 9.3.7. If

x is the number of 10 m square cells in Peter’s land then f(x) gives

a reasonable (continuous) model of the data. (Note that the model

is inaccurate for small numbers of cells, but in practise it would only

be applied for large numbers of cells.)
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Species-area curve for Peter's land

(When you study STAT1201, you’ll see how to use statistical anal-

ysis to judge more precisely whether a model gives a “good fit”.)

Question 9.3.11 Assume that Peter’s land is ecologically repre-

sentative of his local area. All parts of this question refer to species

of native, naturally occurring plants more than 2 m high.

(a) Estimate the total species diversity on Peter’s 4 hectare property.

(b) Peter’s street block measures about 1.5 km by 600 m. Estimate

the total species diversity of his street block.

continued...
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Species-area curves and biodiversity (continued)

Question 9.3.11 (continued)

(c) The land on which Peter lives is four times the size of the land on

which his neighbour lives. Predict the relative species diversity

of these parcels of land.

• The next example shows a Python program which models the

species diversity in a given area, assuming Peter’s property is

ecologically representative of that area.
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Species-area curves and biodiversity (continued)

Python Example 9.3.12

1 # A program to predict species diversity in Peter’s neighbourhood.

2

3 from __future__ import division

4 from pylab import *

5

6 area = input("What is the total area in m^2? ")

7 numSquare = area/100

8 numSpecies = 14 * numSquare**0.2

9

10 print "Predicted number of species: ",round(numSpecies,0)

Here is some output from running the program twice; the output

checks the answers to Question 9.3.11.

1 What is the total area in m^2? 40000

2 Predicted number of species: 46.0

3

4 What is the total area in m^2? 900000

5 Predicted number of species: 86.0

End of Case Study 10.

• In previous examples we have seen how some simple mathematical

functions are used to model various phenomena, and how to

interpret these models.

• Next we build on the functions we have studied, by combining

multiple physical factors in the model.

• Rather than a single independent variable (like time t or area a),

the next example considers how the ambient temperature and the

wind velocity combine to change the apparent temperature that

we perceive.
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Case Study 11:

Wind chill

(Courier mail, 28/7/08)

(temperatures at Thredbo ski resort)

(Wind velocities at Thredbo ski resort)

• We all know that windy days can feel much colder than calm days,

even if ambient air temperatures are the same on both days.

• Particularly on cold days, the apparent temperature to the human

body drops as the wind velocity increases.

• This effect is commonly called wind chill.
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Wind chill (continued)

Question 9.3.13 Derive an equation that models wind chill calcula-

tions. (Hint: start by deciding which factors are important, whether

they increase or decrease the apparent temperature, whether their

effect is linear, and how they interact.)
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Wind chill (continued)

• It is important to measure, model and predict wind chill. It can

cause significant discomfort, and in cold areas it can lead to serious

injuries (such as frostbite) and death.

• Wind chill has been measured in a number of ways.

• The most widely accepted current model was developed by the US

National Weather Service early in 2001.

• Volunteers were exposed to varying low temperatures and high

wind velocities in a wind tunnel.

• Measurements were taken of the physiological impact on the aces

of the volunteers, and also their perceptions of the temperatures.

• An equation was formulated which modelled the perceived wind

chill temperature as a function of the ambient air temperature and

the wind velocity (for velocities of at least 5 km/h).

Question 9.3.14 Let t be the ambient air temperature in ◦C and

v be the wind velocity in km/h. Then the wind chill temperature

W perceived by the human body in ◦C is given by the equation:

Example 9.3.15 On a cold Brisbane bike ride, the ambient tem-

perature is 2 ◦C and the effective wind velocity is 30 km/h. Then

W ≈ 13.12 + 1.24− 11.37× 1.723 + 0.79× 1.723 ≈ −3.85

so the perceived temperature is about −3.85 ◦C.
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Wind chill (continued)

Question 9.3.16 Recall that W = 13.12+0.6215t−11.37v0.16+0.3965tv0.16.

Discuss the impact/meaning of each term in the equation.

Question 9.3.17 In 2007, Peter rode a snowmobile at 100 km/h in

Yellowstone National Park, when the air temperature was −16 ◦C.

What was the perceived temperature?
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Wind chill (continued)

Question 9.3.18 Recall thatW = 13.12+0.6215t−11.37v0.16+0.3965tv0.16.

Discuss in detail how this equation will behave under various condi-

tions involving v and t, including:

(a) Days with the same wind velocity but varying temperatures.

(b) Days with the same temperature but varying wind velocities.

(c) The impact on perceived temperature if the wind velocity in-

creases from 5 km/h to 20 km/h, compared to the impact on

perceived temperature if it increases from 50 km/h to 100 km/h.
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Wind chill (continued)

Question 9.3.19 Recall that the five common ways of present-

ing quantitative models are: words, values, pictures, equations and

computer programs. Making wind chill information widely accessi-

ble and comprehensible can be a matter of life and death. Briefly

discuss the suitability of each of the five ways for making information

about wind chill available.
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Wind chill (continued)

Extension 9.3.20 (From www.ontarioweather.com/winter/safety/...)

Here is how a Canadian website presents wind chill information.

As usual, we can develop a computer model.

Program specifications: Write a program which allows the user

to input the wind speed in km/h and air temperature in ◦C, and

calculates the apparent wind chill temperature.
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Wind chill (continued)

Python Example 9.3.21

1 # A program to calculate apparent wind-chill temperatures

2 # given the wind speed and air temperature.

3

4 from __future__ import division

5 from pylab import *

6

7 airT = input("What is the air temperature in degrees Celsius? ")

8 windS = input("What is the wind speed in km/h? ")

9

10 x = pow(windS,0.16)

11 windC = 13.112 + 0.6215 * airT - 11.37 * x + 0.3965 * airT * x

12

13 print "An air temperature of ",airT," Celsius and wind speed of"

14 print windS,"km/h has a wind chill of",round(windC,1)," Celsius."

Python Example 9.3.22

Here is the output from running the above program three times:

1 What is the air temperature in degrees Celsius? -16

2 What is the wind speed in km/h? 100

3 An air temperature of -16 Celsius and wind speed of

4 100 km/h has a wind chill of -33.8 Celsius.

5

6 What is the air temperature in degrees Celsius? 2

7 What is the wind speed in km/h? 30

8 An air temperature of 2 Celsius and wind speed of

9 30 km/h has a wind chill of -3.9 Celsius.

10

11 What is the air temperature in degrees Celsius? -45

12 What is the wind speed in km/h? 60

13 An air temperature of -45 Celsius and wind speed of

14 60 km/h has a wind chill of -71.1 Celsius.

End of Case Study 11.
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9.4 Space for additional notes
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10 Waves, cycles and seasons

I cannot lie
From you I cannot hide
I’m losing the will to try
Can’t hide it (can’t hide it),
can’t fight it (can’t fight it)
So go on, go on,
come on, leave me breathless

Artist: The Corrs
(www.youtube.com/watch?v=2eBkXXSbwlE)

From the series Haystacks (1890 – 1891), Claude Monet (1840 – 1926), various
museums. (Image source: see en.wikipedia.org/wiki/Haystacks (Monet) )
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Introduction

The previous section showed how some simple mathematical functions
(linear, quadratic and power functions) can be used to model a range of
scientific phenomena.

In this section we will encounter examples of phenomena which regularly
cycle over time; this is quite common in science and nature. Modelling such
phenomena requires a new type of function, called a periodic function. The
graphs of periodic functions are waves.

Some of the examples/contexts we will discuss are:

• Periodic functions and breathing.

• Seasons and daytimes.

Specific techniques and concepts we will cover include:

• Periodic functions.

• Varying frequency and amplitude.
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10.1 Waves, cycles and periodic functions

• Science and nature include many phenomena which repeat or cycle.

The graph of such processes is called a wave.�




�

	

Waves

Key features of the graph of a wave include the:

• peaks and troughs, which are, respectively, the highest and

lowest points on the wave;

• equilibrium value or central value, which is the function value

around which the wave is centred.

• wavelength, which is the distance of one cycle, or the distance

from one peak to the next;

• amplitude, which is the maximum variation from the equilib-

rium value during one cycle;

• phase shift, which is a partial horizontal shift of the wave;

• period, which is the time for one complete cycle; and

• frequency, which is the rate at which the peaks pass a given

point. The frequency equals the reciprocal of the period, and is

measured in cycles per second, with SI base unit hertz or hz.

• To represent waves accurately we require functions which cycle

between certain values and repeat at regular intervals.

• The most common choices for cyclic functions are the standard

trigonometric functions sin and cos .

• (You will have seen these functions before, in the context of angles.

However, in many scientific models they are used not for angles

but instead because they cycle periodically.)

• In SCIE1000 we will always use sin (we could have used cos).
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The periodic function sin

The function f(x) = sin x is a smoothly repeating function with a

period of 2π and an amplitude of 1, with an equilibrium value of 0.

A graph of sinx is shown for x between −2π and 2π; this graph

shows two cycles of a sine wave.

• In practice, modelling different phenomena usually requires

functions with: periods other than 2π; and/or amplitudes other

than 1; and/or an equilibrium value other than 0; and/or a phase

shift.

Question 10.1.1 Suggest some scientific phenomena that cycle,

along with appropriate periods, amplitudes and equilibrium values

(where possible).

• The equilibrium value, period, amplitude and phase of a wave can

be changed by using different constants in sin functions.

SCIE1000, Section 10.1. Page 214



Question 10.1.2 Four copies of the graph of f(t) = sin t are shown

below. In each case, write the equation for a sin function with the

given property, then sketch the graph of that function.

(a) Centred around y = 0.5.

(b) Amplitude of 0.5.

(c) A period of 5.

(d) A phase shift of one half of a cycle.
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Case Study 12:

Periodic functions and breathing

Spirometer healthy lung lung with emphysema

• The human lung (indeed, any lung) has a certain maximum

capacity, which depends on factors such as the size, gender and

level of physical activity of the individual. In an adult human

male, a reasonable estimate of the total lung capacity is 6 L.

• Normal breathing involves rhythmic inhalation and exhalation.

After each (normal) exhalation the lung contains a volume of air,

called the functional residual capacity.

• The volume of air breathed in and out is called the tidal volume.

• Tidal volumes can be measured using a spirometer, and recorded

in a spirogram. (One common type of spirometer uses the Hagen-

Poiseuille equation to measure flow rates of air out of the lungs.)
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Periodic functions and breathing (continued)

Question 10.1.3 The breathing of an individual at rest was mon-

itored. Each cycle took 5 s, the functional residual capacity was 2.2

L, and the tidal volume was 0.5 L.

(a) Sketch a rough graph of lung capacity (that is, the volume of air

in the lung) over time. Assume that at time t = 0 s the person

is inhaling and has inhaled exactly one half of the tidal volume.

(b) Write a function using sin to model the lung capacity in (a).

continued...
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Periodic functions and breathing (continued)

Question 10.1.3 (continued) Recall that a breathing cycle takes

5 s, functional residual capacity is 2.2 L, and tidal volume is 0.5 L.

(c) How would you expect the function to change after a period of

intense physical activity?

(d) Hyperventilation is characterised by rapid, deep inhalations and

exhalations. How would your function change during hyperven-

tilation compared to normal breathing?

(e) Emphysema is a type of Chronic Obstructive Pulmonary Dis-

ease in which lung tissue is destroyed. The resulting impairment

decreases the ability to interchange carbon dioxide and oxygen

during breathing due to a decrease in lung surface area. Em-

physema is often caused by smoking. How would your function

change for an individual with emphysema?

End of Case Study 12.
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10.2 Daytimes, seasons and periodic functions

• An important property of any location on the surface of Earth is

the amount of sunlight available on a given day.

• We will approximate this with the daytime, which we will define as

the time between sunrise and sunset. This definition is independent

of clouds and other weather events that might obscure the sun.

• Daytimes, seasons and climate are all very closely linked.

• At large distances from the equator, summer daytimes are very

long; on some occasions there is no sunrise or sunset for a period

greater than one day. For simplicity, in such cases we say that the

daytime is 24 hours.

• At each location on the surface of Earth, the length of the daytime

varies from day to day throughout the year. However, from year

to year the daytimes on a given date are very similar, so we can

assume they form a repeating, yearly pattern.

• Hence the sin function, with appropriate periods and amplitudes,

can be used to model daytimes at different places on the surface

of Earth, depending on the day of the year.

• (In reality there are slight variations from these functions as

days are discrete time steps whereas the Sun and Earth move

continuously. If you look at a calendar you will see very small

changes in daytimes on a given date from year to year.)

• Some features of daytimes throughout the year include:

– The summer solstice and winter solstice, which are the

days with the longest and shortest daytimes (respectively).

– The vernal equinox and autumnal equinox, which are the

days in spring and autumn (respectively) in which the daytimes

are exactly 12 hours.
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Question 10.2.1 Describe the daytime lengths in midsummer and

midwinter in each of:

(a) Brisbane;

(b) Kuala Lumpur (which is very close to the equator); and

(c) the Santa Claus village, near Rovaniemi in Finland, slightly

north of the Arctic Circle.
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Question 10.2.2 Explain why daytimes vary between locations,

and from day to day. (This is closely related to the reason seasons

occur.) Your explanation should include solstices and equinoxes.

(Hint: Earth has a tilt of 23.45 degrees on its axis of rotation.)

equator

axis of rotation

Earth

Question 10.2.3 The daytimes for Brisbane are:

(Note that this should be
graphed as discrete points but
because the points are so close
it is instead drawn as a smooth
curve.)

Use the graph to answer the following questions.

(a) Approximately when are the solstices in Brisbane, and how long

are the daytimes?

(b) When are the equinoxes in Brisbane?
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Case Study 13:

Equations for daytimes

• Any point on the surface of Earth has a latitude, which is a measure

in degrees of how far it is north or south of the equator.

• For example, the latitude of Brisbane is about 27 degrees, 29

minutes south. (Note that a minute is 1/60 of a degree.)

• On any given day, at every point with the same latitude the

daytime has the same length. For example, New York (USA)

and Madrid (Spain) have very similar latitudes, so will have very

similar daytimes on every day of the year.

• Thus the daytime function for a given latitude can be written as a

function of the number of the day in the year (starting from t = 0

on January 1st).

• The daytime function at any location cycles with an (approximate)

period of 365 days, so the function we use will need to be periodic,

with a period of 365 days.
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Equations for daytimes (continued)

Question 10.2.4 If t is the day number in the year (starting from

t = 0 on January 1st) then the length of the daytime in hours at any

point in the southern hemisphere is given by

D(t) = 12 +K × sin

(
2π

365
(t− 264)

)
where K is a constant determined by the latitude of the point; at the

equator K ≈ 0, and its value increases for more southerly locations.

For Brisbane K ≈ 1.74; the graph with this value of K is plotted.

Discuss the physical and mathematical significance of each term in

D(t).
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Equations for daytimes (continued)

Question 10.2.5 In Brisbane, D(t) = 12 + 1.74 sin
(

2π
365

(t− 264)
)
.

Answer each of the following. (This is very similar to Question

10.2.3, but use the function rather than the graph to answer the

questions.)

(a) Approximately when are the solstices in Brisbane, and how long

are the daytimes?

(b) When will the solstices occur in Townsville (north of Brisbane)

and in Hobart (south of Brisbane)? Why?

(c) The equinoxes have daytimes of length 12 hours everywhere in

the world. When are the equinoxes?
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Equations for daytimes (continued)

Question 10.2.6 In D(t), K ≈ 1 for Townsville, K ≈ 1.74 for

Brisbane, and K ≈ 3.3 for Hobart. The graph for Brisbane is:

(a) Roughly sketch the graphs of D(t) for Townsville and Hobart on

the above graph.

(b) By how much is the daytime on the summer solstice in Hobart

longer than in Townsville? What is the difference on the winter

solstice?

(c) What does this suggest for the total amount of daytime in a year

at any location on Earth? Is this true, and what does it mean?

continued...
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Equations for daytimes (continued)

Question 10.2.6 (continued) Recall in the southern hemisphere,

D(t) = 12+K× sin
(

2π
365

(t− 264)
)

. In the northern hemisphere the

corresponding equation is ND(t) = 12 +K × sin
(

2π
365

(t− 81)
)
.

For Hobart, K ≈ 3.3, and at the Arctic Circle, K ≈ 12.

The Sanderling, Calidris

alba, is a migratory wad-

ing bird which typically in-

habits areas of coastal Aus-

tralia from September un-

til April, when it migrates

to the northern hemisphere

for its breeding season.

(d) An individual Sanderling leaves a latitude equivalent to Hobart

in April and arrives in the Arctic Circle on June 15th. Calculate

how much longer daytime it has on June 15th in the Arctic Circle

compared to Hobart on June 15th.

As usual, we can develop a computer model to investigate this.

Program specifications: Write a program which graphs the differ-

ence in daytime on each day between the Arctic Circle and Hobart.
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Equations for daytimes (continued)

Python Example 10.2.7

1 # A program to calculate the difference in daytime at

2 # the Arctic Circle versus Hobart on each day of the year.

3 from __future__ import division

4 from pylab import *

5

6 # Calculate the daytime for each day at each place.

7 days = arange(0,365)

8 dayTHob = 12 + 3.3 * sin(2 * pi/365 * (days - 264))

9 dayTArc = 12 + 12 * sin(2 * pi/365 * (days - 81))

10

11 # Plot the difference, and draw the labels and title.

12 plot(days, dayTArc - dayTHob, "g-", linewidth=2)

13 xlabel("day number")

14 ylabel("difference in daytime (hours)")

15 title("Difference in daytimes at the Arctic Circle compared

16 with Hobart")

17 grid(True)

18 show()

Here is the output from running the above program:
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Difference in daytimes at the Arctic Circle compared with Hobart

End of Case Study 13.

SCIE1000, Section 10.2. Case Study 13: Equations for daytimes Page 227



10.3 Space for additional notes
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11 Exponentials and logarithms

dum dum, diddle dum dum,
diddle dum dum, diddle dum dum.
There was a turtle by the name of Bert
And Bert the Turtle was very alert
When danger threatened him he never got hurt
He knew just what to do. (bang)
He’d duck (quack) and cover, duck (quack) and cover.
He did what we all must learn to do
You and you and you and you. (bang)
Duck (quack) and cover!

Artist: US Federal Government Civil Defense.

(www.youtube.com/watch?v=C0K LZDXp0I)

(Take the time to watch this and think about it.)

Stonehenge (1835), John Constable (1776 – 1837), Victoria and Albert Museum,
London.

(Image source: en.wikipedia.org/wiki/File:John Constable Stonehenge.jpg)
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Introduction

A graph of global human population over the last two thousand years starts
off fairly flat, but then “takes off” in recent years. This is an example of
exponential growth. Similar behaviour is shown by populations of many
organisms, at least over some range of times.

Other quantities show exponential decay, where the quantity initially falls
very rapidly, but then “flattens out” over time. Two common examples of
exponential decay are the decrease in size of a population when a disease is
introduced, and decay of radioactive isotopes.

Many quantities in nature, and also many man-made phenomena, change
exponentially. This includes phenomena in: physics (such as the electrical
discharge of a capacitor); psychology (the rate at which an individual learns
new knowledge); marketing (the rate at which the impact of an advertising
campaign drops off); business (the balance of a bank account earning
interest); and chemistry (the rates at which some chemical reactions occur).

Other functions closely related to exponentials are logarithms. They can
simplify calculations on exponential functions, and also are the foundation
of numerous physical measurement scales, including the Richter scale and
the pH scale.

Some of the examples/contexts we will discuss are:

• Algal blooms.

• Radioactive decay.

• Carbon dating.

• The pH scale.

Specific techniques and concepts we will cover include:

• Exponentials.

• Logarithms.
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11.1 Growth, decay, exponentials and logarithms

• In nature, the size, number or amount of most phenomena change

over time. Often, the rate of change at any time is proportional to

the amount that is currently there.

• This is typical of many populations. For example, each year the

size of the global human population is increasing by around 1.5%

of its current size.

• Any phenomenon which has a rate of change proportional to the

current amount follows an exponential function. (We will see why

this is when we study differential equations later.)

• When we studied power functions (such as y = x0.25) the power

was always constant, with the variable x in the base.

• With exponential functions the variable occurs in the power and

the base is constant.

�

�

�

�

Exponential functions

Exponential functions have equations

f(x) = Cakx,

where C, a and k are constants. The constant a is called the base.

The two most common values used for the base a are

• the number 10; and

• Euler’s number, denoted e, where e ≈ 2.71828 . . ..

Note that when x=0 the function value equals C. The constant k is

the growth rate or decay rate .
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• Phenomena that change exponentially can be classified as follows:

– If they increase as x gets larger, they are said to display

exponential growth.

– If they decrease as x gets larger, they are said to display

exponential decay.

• For exponential functions, knowledge about how long it takes the

function value to double (for growth functions) or halve (decay)

allows us to study the behaviour of the phenomenon over time.�




�

	

Doubling time/Half-life

The doubling time for an exponentially growing quantity is the

time taken for it to increase to twice its original size.

The halving time or half-life for an exponentially decreasing quan-

tity is the time taken for it to decrease to half its original size.

• Many exponential phenomena in science have relatively constant

doubling times/half lives over extended time periods.

• It is easy to tell from an exponential function whether it gives

growth or decay.

Example 11.1.1 Let f(x) = Cekx where C > 0. Then:

• If k is positive then the function displays exponential growth.

• If k is negative then the function displays exponential decay.

The following graphs show an example of exponential growth (left,

with k = 1) and exponential decay (right, with k = −1).

f(x) = 5ex

f(x) = 5e−x
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Example 11.1.2 Exponential functions occur very frequently in
nature and society. For example, they occur in:

• Unconstrained and constrained population growth.

• Radioactive decay and carbon dating.

• Modelling the concentration of a drug in the bloodstream.

• Modelling habituation to a stimulus (in psychology).

• Logarithms are very closely related to exponential functions.

• Many people find logarithms confusing. However there is nothing

mysterious about them.�

�

�

�

Logarithmic functions

Logarithmic functions are of the form f(x) = loga x. This is pro-

nounced “f of x equals the logarithm of x to the base a”.

In the special case that the base a is Euler’s number e then the loga-

rithm function is often written as f(x) = ln x. This is pronounced

“f of x equals the natural logarithm of x”.�




�

	

Logarithms and exponentials

The relationship between exponentials and logarithms is:

• If y = 10x then x = log10 y (and vice-versa).

• If y = ex then x = ln y (and vice-versa).

Example 11.1.3 Here are some examples of the relationships be-

tween exponentials and logarithms.

• 1000 = 103, so log10 1000 = 3.

• 0.01 = 10−2, so log10 0.01 = −2.

• If y = e0.02x then ln y = 0.02x.

• ln 1 = 0 because e0 = 1.
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11.2 Exponentials in action

Case Study 14:

Algal blooms

Example 11.2.1 Most microscopic algae reproduce asexually, with

the mother cell splitting to form two daughter cells.

Under normal conditions, factors such as predation and limited re-

sources keep algae populations under control. However, sometimes

uncontrolled reproduction occurs, leading to an algal bloom. In

algal blooms, the population of algae can reach 106 individuals per

mL of water. Some blooms are harmful to humans, producing dan-

gerous biotoxins that can be passed on in food sources. Many algal

blooms result directly or indirectly from human activities. It is be-

lieved that their frequency and severity will increase as a result of

further environmental degradation.

Because the rate at which algae reproduce is proportional to the

current population, populations must follow exponential functions.
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Algal blooms (continued)

Question 11.2.2 A certain species of algae grows exponentially

over a given time period. The initial population at time t = 0 is

500 individuals per mL of water, with a growth rate of 2% per hour.

Then the population size P (t) at any time t in hours is (approxi-

mately)

P (t) = 500e0.02t.

(a) Find the population after 2 hours.

(b) Use logarithms to calculate the doubling time of this population.

That is, find the time at which the population size reaches 1000.

(Hint: ln 2 ≈ 0.693.)

continued...
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Algal blooms (continued)

Question 11.2.2 (continued) Recall that the population size P (t)

per mL for the algae after t hours is given by P (t) = 500e0.02t.

(c) A second species of algae also grows exponentially. There are

1000 individuals per mL at time t = 0 with a growth rate of 1%

per hour, so the population Q(t) per mL is Q(t) = 1000e0.01t.

At what time are the populations P and Q the same size?
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End of Case Study 14.

• In Example 11.2.2 the population increased exponentially. Other

phenomena decrease exponentially, showing exponential decay.
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Case Study 15:

Radioactive decay and exponentials

http://www.risoe.dk/

• Not all atoms remain the same over time; some undergo a process

known as radioactive decay.

• Radioactive decay involves a change in the arrangement of the

nucleus of an atom, sometimes changing into a different element.

• Substances that undergo this type of decay are called radioactive.

• When an element undergoes radioactive decay but remains the

same element (so maintains the original number of protons), the

new atom is called an isotope.
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Radioactive decay and exponentials (continued)

• Isotopes can be denoted in several ways. One standard way is to

write the name or chemical symbol of the element, hyphenated

with its atomic mass. For example, Deuterium (an isotope of

Hydrogen and the main ingredient in “Heavy water”) is written as

Hydrogen-2 or H-2.

• Another style writes the atomic mass as a superscript before the

chemical symbol, so Deuterium would be written 2H.

• Radioactive isotopes are important in a range of scientific and

industrial fields, including chemistry, biology, medicine, physics

and engineering.

• Radioactive decay is spontaneous, so there is no way of knowing

when a specific individual atom is going to undergo decay.

• However, it is known that in any given time period a certain

proportion of the total quantity in a sample will have decayed.

• Thus, radioactive material undergoes continuous decay at a rate

proportional to the quantity of material (which is similar to the

algae population in Example 11.2.2 which was growing at a rate

proportional to the current value).

• Hence radioactive decay is an exponential process.�




�

	

Decay constant

For a radioactive element, the decay constant k is a constant that

reflects the rate of decay of the element , and is a property of the

chemical element.

The half-life can be calculated from the value of k, and vice-versa.
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Radioactive decay and exponentials (continued)

Example 11.2.3 Decay constants and half-lives vary greatly be-

tween radioactive elements. For example:

• Polonium-212 has a half-life of about 3× 10−7 s.

• Uranium-236 has a half-life of about 4.5× 109 years.

Example 11.2.4 Strontium-90 is a radioactive isotope of Stron-

tium (atomic symbol Sr, atomic number 38) frequently used in ra-

diotherapy. Strontium-90 has a half-life of about 28.9 years.

Sr-90 is found in nuclear fallout after atomic blasts and nuclear ac-

cidents (for example, the Chernobyl nuclear accident in 1986 caused

extensive Sr-90 contamination). During nuclear fallout Sr-90 falls

onto grass, which is eaten by cows and incorporated into their milk,

and then passed to humans when the milk is consumed.

One of the health risks posed by Sr-90 is that it is chemically similar

to calcium. Hence the body absorbs Sr-90 and incorporates it into

bones and teeth, potentially leading to bone cancer.

Extension 11.2.5 (From Gould et al., Strontium-90 in baby teeth as a
factor in early childhood cancer, International Journal of Health Services 30:3

(2000) 515 – 539.)
“Strontium-90 concentrations in baby teeth of 515 children born
mainly after the end of worldwide atmospheric nuclear bomb tests
in 1980 are found to equal the level in children born during atmo-
spheric tests in the late 1950s. Recent concentrations in the New
York-New Jersey-Long Island Metropolitan area have exceeded the
expected downward trend seen in both baby teeth and adult bone
after the 1963 ban on atmospheric testing... In Suffolk County, Long
Island, Strontium-90 concentrations in baby teeth were significantly
correlated with cancer incidence for children 0 to 4 years of age. A
similar correlation of childhood malignancies with the rise and de-
cline of Strontium-90 in deciduous teeth occurred during the peak
years of fallout. . . .”
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Radioactive decay and exponentials (continued)

Question 11.2.6 Strontium-90 has a half-life of approximately

28.9 years.

(a) Find its decay constant.

(b) It is about 65 years since the first nuclear bomb used in war

(“Little Boy”) was dropped on Hiroshima. Estimate the pro-

portion of Sr-90 released in that explosion which has not yet

decayed.
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Radioactive decay and exponentials (continued)

Example 11.2.7 Carbon-14 (C-14, also known as radiocarbon) is

used extensively throughout science to determine the age of organic-

based artifacts (of age up to around 60,000 years).

C-14 is produced in the upper atmosphere by cosmic rays striking

nitrogen. It then reacts chemically with oxygen to form radioactive

carbon dioxide which permeates living creatures in a fixed propor-

tion, either directly (by absorption from the atmosphere), or indi-

rectly (via food chains).

When an organism dies, the C-14 it contains is no longer continu-

ally replenished, so undergoes net decay over time. Measuring the

remaining level of C-14 allows an organic artifact to be dated; this

process is called carbon dating.

The half-life of C-14 is about 5730 years.

Question 11.2.8

(a) Stonehenge is a well-known prehistoric site located on the Sal-

isbury Plain in the UK. Less well-known is nearby Woodhenge,

which was a similar site constructed (mostly) of wood, somewhat

earlier than Stonehenge. In the 1970s, Archaeologists discovered

the body of a child at Woodhenge, with an injury suggesting hu-

man sacrifice. It is believed that Woodhenge was constructed

around 2200 BC. If so, what is the expected proportion of non-

decayed C-14 in organic artifacts discovered at Woodhenge com-

pared to the initial level?

continued...

SCIE1000, Section 11.2. Case Study 15: Radioactive decay and exponentials Page 241



Radioactive decay and exponentials (continued)

Question 11.2.8 (continued)

(b) Consider the following information from a papera.

“The Shroud of Turin, which many people believe was

used to wrap Christ’s body, bears detailed front and back

images of a man who appears to have suffered whipping

and crucifixion. It was first displayed at Lirey in France

in the 1350s . . . Very small samples from the Shroud of

Turin have been dated by accelerator mass spectrome-

try in laboratories at Arizona, Oxford and Zurich. As

Controls, three samples whose ages had been determined

independently were also dated. The results provide con-

clusive evidence that the linen of the Shroud of Turin is

mediaeval. . . ”

Researchers discovered that around 91.9% of the ‘expected orig-

inal’ amount of C-14 was present in a sample they analysed.

Hence deduce the (approximate) age of the Shroud.

aDamon et al., Radiocarbon Dating of the Shroud of Turin, Nature 337: 6208
(1989) 611–615.

End of Case Study 15.
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Case Study 16:

Hot stuff

www.readersdigest.com.au

• When an object with one temperature is moved to a location with

a different (but constant) temperature, the temperature of the

object will gradually change to match that of the location.

Question 11.2.9 Explain why a graph of the temperature of the

object over time is exponential.

Example 11.2.10 Peter conducted an experiment in which he

recorded the temperature of hot water in a container over one hour;

the room temperature was 25 ◦C. The following pictures show his

experimental apparatus and the recorded temperatures.
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Hot stuff (continued)

Question 11.2.11 Here is a graph of the measured temperatures.

Derive an equation for the water temperature at any time in minutes.

(Hint: note that it approaches room temperature of 25 ◦C, not 0 ◦C.)
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Hot stuff (continued)

Python Example 11.2.12

1 # Program to plot measured and modelled temperatures.

2 from __future__ import division

3 from pylab import *

4

5 # Initialise variables

6 times = array([0, 2, 5, 8, 11, 14, 18, 23, 29, 35, 42, 50, 60])

7 temps = array([85, 79, 71, 65, 58, 54, 48, 43, 37, 34,31,29,26])

8 model = 60 * exp(-0.05 * times) + 25

9

10 # Draw graphs

11 plot(times, temps, ’r-’, linewidth=2)

12 plot(times, model, ’k-’, linewidth=2)

13 xlabel("Time (mins)")

14 ylabel("Temperature of water (degrees celsius)")

15 title("Recorded temperatures")

16 grid(True)

17 text(30,40,"model")

18 text(10,50,"actual")

19 show()

End of Case Study 16.
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11.3 Logarithms in action

Example 11.3.1 As well as helping to solve calculations involv-

ing exponential functions, there are some very well-known scientific

measurement scales that measure log to base 10 of particular quan-

tities. These include:

• the Decibel scale, which measures the ‘loudness’ of sounds

(which is directly related to the amplitudes of sine waves);

• the Richter scale, which measures earthquake intensity; and

• the pH scale (discussed below).

Case Study 17:

Logarithms and the pH scale

• An important application of logarithms in Chemistry is the pH

scale, which is a measure of the acidity or alkalinity of solutions.
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Logarithms and the pH scale (continued)

Question 11.3.2 A pH of 7.00 represents a neutral solution, and

decreasing pH values correspond to an increase in acidity. Most

substances have pH values between 0.00 (very acidic) and 14.00 (very

alkaline).

The pH of a solution reflects its relative concentration of positive

hydrogen ions [H+], in mol/L. The pH is defined as the negative of

the logarithm to base 10 of this concentration, so

pH = − log10[H
+].

(a) Find the pH of gastric digestive juice in which

[H+] ≈ 10−2 mol/L.

(b) Pure water has a pH of 7.00 and coffee has a pH of about 5.00.

What is the relative concentration of hydrogen ions in coffee

compared with pure water?

continued...
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Logarithms and the pH scale (continued)

Question 11.3.2 (continued) The rising level of CO2 in the at-

mosphere due to greenhouse gas emissions poses a significant risk to

the survival of coral reefs. Atmospheric CO2 dissolves into the ocean

and reacts with water to produce carbonic acid (H2CO3), leading to

ocean acidification with a major impact on coral skeletons.

Ice core samples suggest that the long-term average pH of sea water

was about 8.25. Recent studies have predicted that this could drop

to 7.65 by the year 2100.

(c) If this prediction is correct, what will be the relative concentra-

tion of hydrogen ions in sea water in the year 2100 compared to

the long-term historical average?

continued...
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Logarithms and the pH scale (continued)

Question 11.3.2 (continued)

(d) Discuss some ways in which acidification of sea water affects

coral.

Extension 11.3.3 (From Hoegh-Guldberg et al., Coral Reefs Under Rapid
Climate Change and Ocean Acidification, Science 318:5857 (2007) 1737 –
1742.)

“Increases in atmospheric CO2 > 500 ppm will push carbonate-

ion concentrations well below 200 µmol kg−1 ... and sea temper-

atures above +2 ◦C relative to today’s values. These changes

will reduce coral reef ecosystems to crumbling frameworks with

few calcareous corals... Under these conditions, reefs will become

rapidly eroding rubble banks such as those seen in some inshore

regions of the Great Barrier Reef, where dense populations of

corals have vanished over the past 50 to 100 years.”

End of Case Study 17.
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11.4 Space for additional notes
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12 Progress Report 2

Where are we up to?

• So far we have:

– presented a broad overview of the nature of science, and the

activities and attributes involved with science;

– explained how SCIE1000 and other courses fit into this frame-

work;

– identified the importance of modelling, and the five common

ways of presenting models;

– introduced some basic science knowledge;

– discussed the importance of quantitative communication;

– analysed the philosophical nature of science and scientific

thought, including hypotheses;

– described how computer programs and Python can be used to

model phenomena;

– introduced some mathematical techniques which allow quanti-

tative models to be developed; and

– demonstrated how linear, quadratic, power, periodic, exponen-

tial and logarithmic functions can model a range of phenomena.

• By now, you should have a solid understanding of the basis of

scientific activities and thought processes, and some of the roles

that modelling and mathematics play in science.

• In the first lecture we outlined six classes of activity crucial to the

scientific process, and we estimated how much of each activity is

represented in SCIE1000 (and in some other courses).

• The following table outlines this information, and what we have

covered so far in SCIE1000.
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Skill/Activity Overall Done so far

Scientific discipline knowledge 5% 4%

Scientific thinking and logic 15% 13%

Communication and collaboration 15% 13%

Curiosity, creativity, persistence 15% 10%

Observation and data collection 0% 0%

Modelling and analysis 50% 30%

How does it link together:

• In Chapter 2 we built an overall picture of different skills,

approaches and thought processes required to do science.

• In Chapter 6 we refined this, considering the nature of logical,

scientific thought.

• In Chapter 4 we covered some basic scientific knowledge, setting

the scene for future in-depth study of phenomena.

• In Chapter 5 we discussed the importance of precision, accuracy,

honesty and scepticism when communicating quantitative scientific

information, and when collecting, analysing and using data.

• In Chapter 3 we considered the role of modelling in simplifying

reality whilst also maintaining relevance and sufficient accuracy.

• In Chapter 7 we demonstrated how writing computer programs

allows more sophisticated models to be developed, because of their

ability to perform calculations rapidly.

• In Chapter 9 we saw how some simple mathematical functions,

including linear, quadratic and power functions, can model a range

of phenomena.

• In Chapter 10, we modelled “cycling” phenomena using periodic

functions.

• In Chapter 11, we modelled a range of phenomena using exponen-

tial and logarithmic functions.
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What we will do next:

• For most of the rest of semester we will focus on modelling and

analysis. We will:

– stress the importance of studying change;

– remind you about derivatives and rates of change, and use these

concepts to solve some important problems;

– develop a numerical algorithm to solve equations approximately.

– describe how integrals relate to the area under a curve, and

why this is useful;

– introduce the concept of a differential equation, and practice

formulating DEs to represent phenomena; and

– develop numerical algorithms to solve DEs approximately.

• We will study all of these topics through authentic and important

scientific contexts.

• Do not attempt to memorise details of particular contexts or

mathematical approaches.

• Instead, understand when and how each technique can be applied,

and how to decide which is the most appropriate to use.

• We will also see examples of how Python programs can assist with

the modelling process.
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13 Sex and drugs and rates of change

I met with a gal and we went on a spree
She taught me to smoke and to drink whuskey.
Cigareets and whuskey and wild wild women
They’ll drive you crazy, they’ll drive you insane.
And now I’m feeble and broken with age
The lines on my face make a well written page.
I’m leavin’ this story how sad but how true
On women and whuskey and what they will do.

Artist: Jim Croce

(www.youtube.com/watch?v=yVw96wzmZC8)

The Garden of Earthly Delights (1503 – 1504), Hieronymus Bosch (c. 1450 – 1516),
Museo del Prado, Madrid.

(Image source: en.wikipedia.org/wiki/Image:GardenED edit1.jpg)
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Introduction

Change is an important part of life. Whether it is a change in the length of
days, the behaviour of rats in a maze, the level of CO2 in the atmosphere
or the species diversity of an island, change is universal.

Indeed, all modelling and prediction revolves around change: if something
does not change then the future value of that quantity is certain and there
is no need to model or make predictions.

Since change is such a fundamental part of the world in which we live, it
makes sense that finding the rate at which things change is an important
activity for scientists. You will need to know how to: find rates of change;
apply these techniques to a variety of problems; and interpret your answers.

Some of the examples/contexts we will discuss are:

• Pharmacology.

• Antidepressants.

• Nicotine.

• Pharmacokinetics and drug concentrations.

• Alcohol.

• Caffeine.

• Mathematics and contraception.

• Forensic science.

Specific techniques and concepts we will cover include:

• Interpreting rates of change from graphs.

• Finding average rates of change.

• Instantaneous rates of change and derivatives.

• Finding derivatives.

• Newton’s method for numerically solving equations.
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13.1 Pharmacokinetics and rates of change

1

Pharmacology

Pharmacokinetics (PK)
study of what body does to drug
• Absorption

• Distribution

• Metablism

• Excretion

Pharmocodynamics (PD)
study of  what drug does to body
• mimic/inhibit normal processes

• inhibit pathological processes

• stimulants, depressants, toxins

Pharmacodynamics (PD)

Sigmoidal (S-shaped) curve

reminiscent of  logistic growth curve
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Some drug-related terminology

Broadly speaking, a drug is any chemical substance that affects

the function of an organism, usually introduced from outside the

organism. Drugs are commonly used to enhance physical or mental

well-being, and include both medicinal and so-called recreational

drugs.

Pharmacology is the study of how drugs interact with living or-

ganisms and the mechanisms by which they result in a change in

function.

Pharmacokinetics is the study of what happens to a drug inside

the body (particularly the extent and rate of absorption, distri-

bution, metabolism and excretion of drugs).

Pharmacodynamics is the study of what effects a drug has on the

body. (We will not cover this in any detail in SCIE1000; there are

many other courses in which you can study this important area.)�

�

�



Drug concentrations

After a drug is administered, a key determinant of the impact of a

drug is its concentration in the bloodstream, which is commonly

measured as mass per volume (such as mg/L).

Typically, concentrations are measured (or predicted) over some time

period after the drug is administered, and can be shown graphically

using a drug concentration curve.

• Mathematics and functions are particularly important when

modelling the change in drug concentrations over time.
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Case Study 18:

Zoloft

Source: upload.wikimedia.org Age-specific prevalence of depression, Australia, 1997.
Source: www.aihw.gov.au

• Zoloft (and a number of generically-branded equivalents) is

the brand name of the drug sertraline hydrochloride. It is an

antidepressant of the SSRI class (Selective Serotonin Reuptake

Inhibitor).

• The Consumer Medicine Information fact sheet states that SSRIs

“. . . are thought to work by blocking the uptake of a chemical

called serotonin into nerve cells in the brain. Serotonin and other

chemicals called amines are involved in controlling mood.”

• Zoloft is the most commonly prescribed antidepressant in Australia,

and one of the most prescribed drugs overall on the Australian

Pharmaceutical Benefits Scheme.

• Zoloft is taken orally as a pill. The usual dosage ranges from 25

mg per day to 200 mg per day.

• Zoloft has a number of comparatively mild side effects (including

insomnia, loss of appetite, and some sexual impairment), and is

generally believed to be both effective and well tolerated.

• There has, however, been media controversy over some years about

possible adverse impacts in a small number of people.
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Zoloft (continued)

Example 13.1.1 When recommending a dosage of a therapeu-

tic drug, pharmacologists need to consider a range of physiological

factors, including:

• how rapidly the drug is absorbed;

• whether it should be taken with food;

• how often should a dose be administered;

• what proportion of administered drug is absorbed;

• how quickly the drug is distributed in the body;

• how the drug is metabolised;

• what concentration of the drug is required to have the desired

effect, and for how long; and

• how rapidly the drug is excreted.

In terms of concentration graphs, pharmacologists will observe and

measure:

(a) the peak concentration;

(b) the time at which peak concentration occurs;

(c) the half-life of the drug, which is the time taken for the concen-

tration to fall to half of its previous value;

(d) the minimum effective concentration, below which the drug does

not have the desired therapeutic effect;

(e) the maximum rate of drug absorption and when this occurs;

(f) the maximum rate of drug removal and when this occurs;

(g) a possible “danger level” of drug concentration, above which

the person may require monitoring; and

(h) the “total exposure” of the body to the drug.

Understanding rates of change plays an important role in analysing

most of these factors.
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Zoloft (continued)

Question 13.1.2 An idealised drug concentration graph is shown.

Mark on the graph the values (or possible values) of each of (a) to

(h) described in Example 13.1.1.

• Compare the information on Zoloft in the following example with

some of the features/observations in Example 13.1.1.
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Zoloft (continued)

Example 13.1.3 (From the sertraline fact sheet at www.pbs.gov.au.)

“Pharmacokinetics:

In humans, following oral once-daily dosing over the range of
50 to 200 mg for 14 days, mean peak plasma concentrations
(Cmax) of sertraline occurred between 4.5 to 8.4 hours post dos-
ing. The average terminal elimination half-life of plasma sertra-
line is about 26 hours. Based on this pharmacokinetic parame-
ter, steady-state sertraline plasma levels should be achieved af-
ter approximately one week of once-daily dosing. Linear dose-
proportional pharmacokinetics were demonstrated in a single
dose study in which the Cmax and area under the plasma con-
centration time curve (AUC) of sertraline were proportional to
dose over a range of 50 to 200 mg.

Dosage: Adults (18 years and older)

The usual therapeutic dose for depression is 50 mg/day.
. . . patients not responding to a 50 mg/day dose may benefit
from dose increases up to a maximum of 200 mg/day. Given the
24 hour elimination half-life of sertraline, dose changes should
not occur at intervals of less than 1 week. The onset of thera-
peutic effect may be seen within 7 days; however for full activity
2 to 4 weeks are usually necessary . . . .

Use in Children and Adolescents aged less than 18 years:

Sertraline should not be used in children and adolescents be-
low the age of 18 years for the treatment of major depressive
disorder. The efficacy and safety of sertraline has not been
satisfactorily established for the treatment of major depressive
disorder in this age group.

Overdosage:

On the evidence available, sertraline has a wide margin of safety
in overdose. Overdoses of sertraline alone of up to 13.5 g have
been reported. Deaths have been reported involving overdoses
of sertraline, primarily in combination with other drugs . . . .”
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Zoloft (continued)

Extension 13.1.4 (From the Australian newspaper online, 1/11/2008)
“Probe into antidepressants being conducted ‘in secret’

The Therapeutic Goods Administration is investigating the adverse
effects of SSRI antidepressants, a widely prescribed group of drugs
that includes the well-known brands Prozac and Zoloft.

The TGA confirmed in a statement to [the newspaper] that it had
established a special expert panel of psychiatrists and epidemiologists
to review a number of cases involving patients who had had adverse
reactions to these drugs. It is believed hundreds of cases will be
reviewed.

“Although there has not been a jump in adverse events from SS-
RIs, there has been community concern about potential overuse”,
the TGA said. Medicare figures show that, since 1990, when Prozac
first appeared on pharmacy shelves, there have been almost 10,000 re-
ports of suspected adverse reactions to SSRIs received by the TGA’s
Australian Adverse Drug Reactions Advisory Committee.

More than 12 million SSRI antidepressant scripts were subsidised by
the Pharmaceutical Benefits Scheme last year . . . .

The TGA has also asked all drug companies that market SSRI antide-
pressants in Australia to update the wording of their suicide warnings
concerning children and young people under 24 years in the informa-
tion provided to patients. . . .

The move comes after an investigation by The Weekend Australian
revealed several hundred thousand scripts for antidepressants such as
Zoloft and Prozac were last year prescribed to children and subsidised
through the Pharmaceutical Benefits Scheme, despite the TGA and
Pfizer, the company that markets Zoloft in Australia, recommending
they not be prescribed to anyone under the age of 24 for the treatment
of depression. Significant discrepancies in the information given to
parents about the potential dangers of the drugs to children were also
uncovered. . . ”

End of Case Study 18.
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• Pharmacokinetics is particularly concerned with the rate at which

the drug concentration changes.

• The concept of one quantity changing as another quantity changes,

and the rate at which this change occurs, is crucial to many

applications in science, engineering, social sciences and economics.

Example 13.1.5 In addition to answering questions about drug

concentrations, rates of change are important in solving problems

such as:

• landing a space capsule on the moon with minimum fuel usage;

• predicting the spread of ash from a volcanic eruption;

• modelling earthquakes and tsunamis, allowing predictions to be

made about which areas will be affected, and when;

• predicting future populations of two interacting species;

• estimating the impact of a vaccination program on the spread

of a disease;

• predicting the impact on blood flow due to constriction of an

artery;

• minimising risk in a share portfolio;

• determining the time to equilibrium for a chemical reaction;

and

• predicting the time at which a student will attain a certain

threshold level of knowledge about a topic.

• We will cover two similar ways of studying rates of change:

– average rates of change; and

– instantaneous rates of change.
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13.2 Average rates of change

• The average rate of change measures the average rate at which

some phenomenon changes between two observations.

• In science, average rates of change are usually specified as occurring

in some time period (such as 60 m s−1).

• To find the average rate of change of a quantity between two

observations over time:

divide the total change in the quantity by the total change

in time.

#

"

 

!

Average rate of change

Let (x1, y1) and (x2, y2) be two points. Then the average rate of

change of y with respect to x between those points is defined to

be the change in y values divided by the change in x values, so:

change in y

change in x
=

∆y
∆x

=
y2 − y1

x2 − x1
.

(Note that ∆ is the Greek capital letter “Delta”, and usually means

“the change in the value of”.)

(x2, y2)

y
∆y = y2 − y1

(x1, y1)

∆x = x2 − x1

Example 13.2.1 The concentration of atmospheric CO2 has risen

by about 70 ppm over the last 50 years. Hence the average rate of

change over this time is
70

50
= 1.4 ppm/year.
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Case Study 19:

Cigarettes

• Nicotine is an addictive, poisonous alkaloid found in a number

of plants, including tobacco. Tobacco products also contain a

large number of other compounds, many of which are damaging to

health.

(source: quit-smoking-aid.net)

SCIE1000, Section 13.2. Case Study 19: Cigarettes Page 265



Cigarettes (continued)

Tobacco
• cigarettes, cigars, pipes, snuff
- widely used stimulants (inhaled, chewed)

- mainstream cigarette smoke
- 1-3 billion particles/mL
- 4,000 substances (43 carcinogens)
- metals (arsenic, cadmium...), promoters (phenols...)
- irritants (formaldehyde...), toxins (cyanide)
- carbon monoxide (200x affinity for Hb than O2)

- causative agents for many diseases, incl.
- lung cancer
- chronic respiratory diseases
- cardiovascular diseases

Why smoke?    nicotine addiction

Nicotine

Three main effects
– enhanced dopamine release 

(reward circuit, ↑ pleasure)
– addictive behaviours

(physical dependence)
(psychologic dependence)

– enhanced neurotransmission 
(↑ cardiovascular responses, ↑HR, ↑BP, ↑CO)
(hypertension, arteriosclerosis, MI, stroke)
(COPD – chronic obstructive pulmonary disease) 

– alkaloid substance (insecticide)
– readily crosses blood-brain barrier
– stimulates receptors in neural synapses 

(nicotinic acetyl choline)

Nicotine
Pharmacokinetics (PK): 

~ 1mg/cigarette, LD50 ~ 1 mg/Kg

Absorption
- through lungs, within seconds

Distribution
- throughout body via circulation
- effect on brain within 7 seconds 

Metabolism (t½ ~ 2 hours)
- oxidation in liver

(cytochrome P450 system, CYP2A6, CYP2B6)
(FMO system, flavin-containing monooxygenase)

Excretion
- must be metabolized
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Cigarettes (continued)

Extension 13.2.2 (From a NSW Government Health Dept. fact sheet)

“What is nicotine?

Nicotine is a chemical substance found in tobacco leaves.
Addiction to nicotine is what keeps you smoking. Nicotine
is as addictive as heroin or cocaine.

How does nicotine work?

From the moment that you inhale tobacco smoke, it takes
four seconds for the nicotine to reach your blood stream and
about ten seconds to reach the brain. Once the nicotine has
attached itself to special sites in the brain, many relaxing
chemicals are released. But this effect only lasts for a short
time and then the addicted smoker needs to ‘top up’ their
nicotine...

Why is nicotine a problem for health?

The worst problem for health caused by nicotine is that it
is so addictive.... Smoking tobacco accounts for the largest
proportion of preventable illness and death in Australia. Im-
mediate effects of nicotine on the body include increased
heart rate and blood pressure and constriction of blood ves-
sels. Over time, ingestion of nicotine from smoking combines
with carbon monoxide to damage the lining of blood vessels
and make blood platelets stickier. In combination these ef-
fects contribute to the development of heart disease.

Although nicotine is among the most toxic and fast acting
of all poisons, the dose from smoking is too low to cause
acute poisoning (smoking poisons you slowly)....

How does your body get rid of nicotine?

Most of the nicotine (80 per cent) is broken down in the
liver. Nicotine is also filtered from the blood by the kidneys
and removed in urine.”
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Cigarettes (continued)

Example 13.2.3 When a cigarette is smoked, nicotine is rapidly

absorbed into the bloodstream through the lungs. The following

table shows measurements of the blood-concentration of nicotine of

a person at various time intervals after smoking a cigarette.

t (min.) 0 5 10 15 20 25 30

C(t) (ng/mL) 4 12 17 14 13 12 11

t (min.) 45 60 75 90 105 120

C(t) (ng/mL) 9 8 7.5 7 6.5 6

This data is plotted on the following graph.

(Note that the measurements were taken at discrete time intervals.

Hence the data points should not be joined on the graph; the con-

necting lines are there only to make the graph easier to read.)
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Cigarettes (continued)

Question 13.2.4 The graph from Example 13.2.3 is:
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(a) Explain the main features of the shape of the graph (which is

typical of many drugs).

(b) The person commences smoking again at t = 200 mins. Roughly

estimate their blood-nicotine concentration at that time.

(c) Find the total change in blood-concentration of nicotine from

t = 0 to t = 120 min?

(d) Find the average rate of change in concentration from:

(i) t = 0 to t = 120 min; and

(ii) t = 0 to t = 10 min.

End of Case Study 19.
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13.3 Instantaneous rates of change and

derivatives

• Average rates of change are often useful.

• However, if a rate of change varies substantially then average rates

of change become less useful.

• In many situations it is more useful to measure the instantaneous

or exact rate of change.

• If we know the exact rate of change, we can identify a number of

important features. For example, at any peak or trough the rate of

change is 0. (On a drug concentration curve, a peak corresponds

to the peak concentration level.)

• Hence we require a new approach which finds the instantaneous

rate of change of a function at a point. The mathematical concept

which does this is called the derivative.�

�

�

�

Derivatives

Let f(x) be a function. Then the derivative of f is a new function

denoted f ′(x) that gives the instantaneous slope or rate of change of

the function f at any point x.

Another way of writing the derivative is
df

dx
.

The process of finding a derivative is called differentiation. In this

course we will assume that the derivative always exists when we need

it to. (There are situations where derivatives do not exist.)

The derivative of the derivative is often called the second derivative,

denoted f ′′.

• You will need to know how to interpret and use derivatives. Make

sure you understand what a derivative is, and what information it

gives.
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Interpreting derivatives

If y = f(x) is a function then the derivative y′ gives the rate at

which y is changing with respect to x.

The value of the derivative at any point describes the behaviour

of the function at that point. At any point:

• if y′ is positive then the function y is increasing;

• if y′ is negative then the function y is decreasing; and

• if y′ equals zero then the function y has one of:

– a local maximum or peak at that point; or

– a local minimum or trough at that point; or

– a point of inflection at that point (which we will not cover

in this course).

Example 13.3.1 Let f(x) be the following function.

• f ′ = 0 at x = −2, which is a local maximum.

• f ′ = 0 at x = 1, which is a local minimum.

• f ′ is positive between x = −3 and x = −2, and also between

x = 1 and x = 3.

• f ′ is negative between x = −2 and x = 1.
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Question 13.3.2 Consider the concentration function C(t):

(a) What is the physical meaning of C ′?

(b) On the graph:

(i) mark with a cross any points at which C ′ = 0;

(ii) label any local maxima with the word ‘max’;

(iii) label any local minima with the word ‘min’;

(iv) identify all regions where C ′ is positive; and

(v) identify all regions where C ′ is negative.

(c) What is physically happening when C ′ is:

(i) positive?

(ii) zero?

(iii) negative?
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13.4 Finding derivatives

• At school you would have learned how to find derivatives.

• Differentiation techniques are summarised below; make sure you

are comfortable with them but don’t memorise them!

• Any rules you need will be given on your exam; any derivatives

you need to find will be fairly easy.�

�

�

�

Derivatives of some common functions

f(x) f ′(x)

f(x) = k, where k is a constant. f ′(x) = 0

f(x) = xn, where n is any real number. f ′(x) = nxn−1

f(x) = sinx f ′(x) = cos x

f(x) = cos x f ′(x) = − sinx

f(x) = ekx, where k is a constant. f ′(x) = kekx

f(x) = ln x (x > 0) f ′(x) = 1/x

�

�

�

�

Some differentiation rules

Let f(x) and g(x) be functions and k be a constant. Then:

• (kf)′ = kf ′ (Constant multiple rule)

• (f ± g)′ = f ′ ± g′ (Sum/difference rule)

• (fg)′ = f ′g + fg′ (Product rule)

• (f/g)′ = (f ′g − fg′)/g2 (Quotient rule)

• f(g)′ = f ′(g)g′ (Chain rule; alternately,
df

dx
=
df

dg
× dg

dx
)

SCIE1000, Section 13.4. Page 273



Question 13.4.1 For practise, find the derivatives of each of:

(a) f(t) = 3t2 + 6t+ 4

(b) h(t) = e0.2t

(c) j(t) = t2e0.2t

(d) some additional functions of your choice.
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13.5 Numerical solutions and Newton’s method

Question 13.5.1 Later we will see that a function modelling

blood-concentration of a long-lasting injection of a female con-

traceptive (in ng/mL of medroxyprogesterone acetate or MPA) is

C(t) = 1.4t0.15e−0.02t. The graph of C(t) is:
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MPA concentration-time curve

(a) If the minimum blood-concentration level for reliable contracep-

tion is 0.3 ng/mL, estimate from the graph the time at which

reliable contraception ceases.

(Injections are given every 12− 13 weeks.)

(b) Rewrite Part (a) as an equation to be solved.

(c) How could the equation in Part (b) be solved?
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• Often in science we need to solve equations which are difficult or

impossible to solve exactly.

• An alternative is to find an approximate solution, using root-

finding algorithms. (Remember that root is another word for

solution.)

• Typically, root-finding algorithms involve applying similar steps a

number of times; these steps are called iterations.

• There is usually a numerical error associated with approximate

solutions calculated by root-finding algorithms.

• Numerical errors can often be reduced by performing more

iterations.

• One iterative root-finding algorithm is called Newton’s method,

which uses an initial estimate of a root and a derivative to find

a root of a function.

• Newton’s method does not always converge to a solution. However,

it will usually converge if the initial estimate is ‘good enough’.�

�

�

�

Newton’s method (informal description)

To find a value of x for which f(x) = 0, that is a root of f(x),

Newton’s method proceeds as follows:

1. Choose an initial estimate of the root.

2. Calculate a new estimate of the root using the old estimate and

the derivative. (The new estimate is hopefully more accurate

than the previous one.)

3. Stop if the new estimate is sufficiently accurate or if too many

steps have been taken. Otherwise, return to Step 2.
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• Note that Newton’s method only solves equations of the form

f(x) = 0.

• Before Newton’s method can be applied the equation may need to

rearranged, giving an equivalent equation with 0 on the right hand

side.

• For example, in Part (b) of Question 13.5.1, the equation to solve

was C(t) = 0.3 . To use Newton’s method we instead solve

C(t)− 0.3 = 0 .

�

�

�



Newton’s method (formal description)
To find a value of x for which f(x) = 0, that is a root of f(x), Newton’s

method proceeds as follows:

1 Let x0 be an initial estimate of a root of f that is ‘sufficiently close’

to an actual root of f . At the ith iteration (i = 0, 1, 2, . . .), xi is the

current approximation to the actual root.

2 Calculate the next estimate xi+1 by the equation:

xi+1 = xi −
f(xi)
f ′(xi)

3(a) If the value of xi+1 is sufficiently accurate then stop; xi+1 is the

estimated root.

(b) If too many steps have been taken and xi+1 is not sufficiently

accurate then stop, as the method is not converging to a solution.

Choose a ‘better’ value for x0 and start again.

(c) Otherwise, return to Step 2.
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• The idea behind Newton’s method is not too hard. Assume that

f(x) has a root at x = r, so f(r) = 0. Let the initial estimate of

the root be x0.

• The method calculates the next estimate x1 by extending a line

from the point (x0, f(x0)) to the x-axis, with the slope of the line

equal to the derivative f ′ at the point x0.

• Rearranging the formula for the equation of a straight line gives

Newton’s method (see below).

(x0, f(x0))

y = f(x)

r x2 x1 x0

• If x0 is sufficiently close to the root then the new approximation

x1 will be closer to the root than was x0.

• These steps continue until either a good approximation to the root

is found, or too many steps have been taken.

(If you are interested in seeing why Newton’s method works, consider

the straight line joining the points (x0, f(x0)) and (x1, 0). This line

has gradient equal to f ′(x0), which must also be equal to
f(x0)− 0

x0 − x1

.

Thus f ′(x0) =
f(x0)

x0 − x1

and rearranging this gives x1 = x0 −
f(x0)

f ′(x0)
. )
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Example 13.5.2 Use Newton’s method to estimate
√

12.

Answer: First, we need to rewrite the question in the form of an

equation to be solved.

Let f(x) = x2 − 12.

Finding
√

12 is the same as solving f(x) = 0.

To apply Newton’s method, we first need to find the derivative and

choose an initial estimate of the root:

• Because f(x) = x2 − 12, we have f ′(x) = 2x .

• We know that
√

12 is between 3 and 4, so we will use x0 = 3

as the initial estimate of the root. (We could choose other

estimates but x0 = 3 is likely to be “close” to the root.)

Now we have everything we need to use Newton’s method. Ap-

plying three steps gives the following results, with the sequence of

approximations to the root in the last column. (Recall that the

equation is xi+1 = xi −
f(xi)

f ′(xi)
.)

i xi f(xi) f ′(xi) xi+1

0 3 −3 6 3.5

1 3.5 0.25 7 3.4642857

2 3.4642857 0.001275 6.92857 3.4641016

After three steps, the estimate of
√

12 is x3 = 3.4641016.

Note that:

• The estimated root barely changed from x2 to x3.

• The estimate of the root is quite accurate; in fact, x3 is correct

to seven decimal places.
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13.6 Pleasures of the flesh and derivatives

• Now we will apply derivatives to drug concentration graphs.

Alcohol
- colourless volatile fluid(s)
- ethanol    C2H5OH
- obtained by fermentation of sugars
- beer, wine, spirits
- most commonly used drug worldwide

EFFECTS
- acute intoxication

- slurred speech, motor incoordination, altered behaviour
- increased self-confidence, impaired judgement/reflexes

- chronic use
- liver disease (fat deposits, hepatitis, cirrhosis)
- neuropathy (central and peripheral)
- cardiovascular (myopathy, hypertension)
- gastro-intestinal (gastritis, pancreatitis)
- reproductive (testicular atrophy, foetal alcohol syndrome)

Pharmacodynamics: ethanol
- central nervous system (CNS) depressant

(similar to anaesthetics)

- mode of action (unknown)
- ↓ signal transduction in brain
- inhibits:

- GABA transmitters
- voltage-gated Ca++ channels
- NMDA receptors

- paradoxically, no specific
receptor has been identified

- but chronic use leads to:
- psychological dependence
- physical dependence 

Pharmacokinetics: ethanol
ADME:   - variable (age, sex, weight, race, history)

(type, amount, activity, diet, etc)
- Absorption

- 25% stomach, 75% duodenum
- peaks 0.5-2.0 hours after ingestion

- Distribution
- rapidly throughout body via bloodstream

- Metabolism
- 90% in liver (alcohol dehydrogenase, catalase,

microsomal ethanol-oxidizing system)
- Excretion

- 1-5% in breath, 1-3% in urine, 0.5% in sweat 

BAC: legal limit = 0.05% = 0.5‰ = 0.5 g/L = 50 mg/dL
0.35% - fatal poisoning (LD50 ~ 0.4%)
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Case Study 20:

Whisky

Statistics for Victoria

• A standard drink contains 10 g of alcohol.

• Blood Alcohol Concentration (BAC) is usually measured as the

percentage of total blood volume which is alcohol (or in grams of

alcohol per litre of blood). In Australia the legal blood alcohol

content for driving is 0.05%, or 0.5 g/L.

• Unlike many other drugs, the rate of metabolising alcohol by the

body is roughly constant. (In Chemistry, this is called a zero-order

reaction.)

• This rate is usually not dependent on the BAC because typi-

cal levels of alcohol consumption saturate the capacity of the

metabolising enzymes within the liver.

• The exact rate of metabolism varies between individuals, and is

influenced by such factors as age, weight and gender.

• A graph of BAC plotted from the time of commencing drinking

will show a rapid initial rise during the absorption phase, prior to

the elimination phase.

• Because the rate of metabolising alcohol tends to be constant, once

a person ceases drinking and alcohol absorption is complete, then

a graph of BAC from that time on will be linear (until metabolism

is almost complete).
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Whisky (continued)

Question 13.6.1 After a particularly awful SCIE1000 lecture a

student quickly consumes far too much alcohol. At time t in hours

since his last drink his BAC is B(t) = 0.16−0.015t %. This graph

is shown below (note that the graph shows the blood concentration

after the absorption phase):

(a) Find B′(t).

(b) Interpret, in words, what B′(t) represents.

continued...
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Whisky (continued)

Question 13.6.1 (continued) The following tables estimate the

number of hours required for the BAC of males and females of dif-

ferent weights to return to zero. (These are taken from an American

government website; to approximately convert from pounds to kg,

divide by 2.2.)

Males:

num. Weight (pounds)
drinks 120 140 160 180 200 220 240 260

1 2 2 2 1.5 1 1 1 1
2 4 3.5 3 3 2.5 2 2 2
3 6 5 4.5 4 3.5 3.5 3 3
4 8 7 6 5.5 5 4.5 4 3.5
5 10 8.5 7.5 6.5 6 5.5 5 4.5

Females:

num. Weight (pounds)
drinks 120 140 160 180 200 220 240 260

1 3 2.5 2 2 2 1.5 1.5 1
2 6 5 4 4 3.5 3 3 2.5
3 9 7.5 6.5 5.5 5 4.5 4 4
4 12 9.5 8.5 7.5 6.5 6 5.5 5
5 15 12 10.5 9.5 8 7.5 7 6

(c) Using the information in the tables, comment on B′(t) for males

versus females, and for different body weights.

End of Case Study 20.
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Case Study 21:

Caffeine

• Unlike alcohol (which saturates the enzymes so is metabolised at a

constant rate), many other drugs are metabolised by the body at

a rate proportional to the current concentration of the drug in the

bloodstream. (In Chemistry, this is called a first-order reaction.)

• Hence their concentration functions must be exponential .

Question 13.6.2 To stay awake in SCIE1000, a student drinks two

large, strong cups of coffee. After 30 minutes the caffeine concentra-

tion in her blood attains its peak level. At any time t after this (in

hours) the concentration of caffeine in her blood in mg/L is given by

C(t) = 8e−kt

where k is a positive constant (so the power is negative).

continued...
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Caffeine (continued)

Question 13.6.2 (continued) Recall that C(t) = 8e−kt mg/L.

(a) Find C ′(t).

(b) What do you notice about the functions C and C ′? What does

this mean? (We will study this in the section on differential

equations.)

(c) For this student, the half-life of caffeine is 3 hours. Find the

value of the constant k.

End of Case Study 21.
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Case Study 22:

Wild, wild women

• Depo-subQ Provera 104 is a long-term female contraceptive

administered as an injection every 12− 13 weeks.

• The active ingredient in a standard 0.65 mL does is 104 mg of the

artificial female hormone medroxyprogesterone acetate (MPA),

which is similar to progesterone.

• The contraceptive works by causing changes to the female repro-

ductive system resulting in both inhibition of egg release and a

hostile environment to sperm.

• It is 99.7% effective, which is very high compared to many other

forms of contraception.

• Commonly quoted benefits are convenience and reliability.

• As with many drugs, studies have identified potential side effects

(including breakthrough bleeding, reduced libido, weight gain and

reduced bone density).
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Wild, wild women (continued)

Example 13.6.3 Comparison of various forms of contraception.
Percentage of Women Experiencing an Unintended Pregnancy During the First 
Year of Typical Use and the First Year of Perfect Use of Contraception and the 

Percentage Continuing Use at the End of the First Year: United States 

 

% of Women Experiencing 
an Unintended Pregnancy 

within the First Year of Use 

% of Women Continuing 
Use at 1 Year* 

Method Typical Use† Perfect Use‡ 

 

Chance 85 85 
  

Spermicides 26 6 40 
 

Periodic Abstinence 25 
 

63 
 

   Calendar 
 

9 
  

   Ovulation Method 
 

3 
  

   Symptothermal 
 

2 
  

   Post-ovulation 
 

1 
  

Cap 
    

   Parous Women 40 26 42 
 

   Nulliparous Women 20 9 56 
 

Sponge 
    

   Parous Women 40 20 42 
 

   Nulliparous Women 20 9 56 
 

Diaphragm 20 6 56 
 

Withdrawal 19 4 
  

Condom 
    

   Female (Reality) 21 5 56 
 

   Male 14 3 61 
 

Pill 5 
 

71 
 

   Progestin only 
 

0.5 
  

   Combined 
 

0.1 
  

IUD 
    

   Progesterone T 2.0 1.5 81 
 

   Copper T 380A 0.8 0.6 78 
 

   LNg 20 0.1 0.1 81 
 

Depo-Provera IM 150 mg 0.3 0.3 70 
 

Norplant and Norplant-2 0.05 0.05 88 
 

Female Sterilization 0.5 0.5 100 
 

Male Sterilization 0.15 0.10 100 
 

 

†   Among typical couples who initiate use of a method (not necessarily for the first time), the 

percentage who experience an accidental pregnancy during the first year if they do not stop use 

for any other reason.  

‡  Among couples who initiate use of a method (not necessarily for the first time) and who use it 

perfectly (both consistently and correctly), the percentage who experience an accidental 

pregnancy during the first year if they do not stop use for any other reason.  

Source: www.drugs.com/pro/depo-subq-provera-104.html
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Wild, wild women (continued)

Example 13.6.4 The following table shows pharmacokinetic pa-

rameters of MPA after a single SC injection of Depo-SubQ Provera

104 in healthy women (n = 42).

Cmax tmax C91 AUC0−91 AUC0−∞ t1/2

(ng/mL) (day) (ng/mL) (ng day/mL) (ng day/mL) (day)

Mean 1.56 8.8 0.402 66.98 92.84 43

Min 0.53 2.0 0.133 20.63 31.36 16

Max 3.08 80.0 0.733 139.79 162.29 114
www.drugs.com/pro/depo-subq-provera-104.html

• Cmax = peak serum concentration; tmax = time when Cmax is observed;

• C91 = serum concentration at 91 days;

• AUC0−91 and AUC0−∞ = area under the concentration-time curve over
91 days or infinity, respectively; and

• t1/2 = terminal half-life.

Example 13.6.5 A patient is injected with a dose of Depo-subQ

Provera 104. The following function models the concentration of

MPA in her blood in ng/mL at time t in days after the dose.

C(t) = 1.4t0.15e−0.02t.
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MPA concentration-time curve
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Wild, wild women (continued)�

�

�

�

Surge functions

The concentration function for Depo-subQ Provera 104 is an example

of a surge function, so called because the function value initially

surges rapidly before falling off exponentially over time. A general

equation for a surge function is

f(t) = atpe−bt

where a, p and b are positive constants determined by the character-

istics of the particular phenomenon. The function for Depo-subQ

Provera 104 is C(t) = 1.4t0.15e−0.02t, so a = 1.4, p = 0.15 and

b = 0.02.

Question 13.6.6 Explain mathematically why surge functions

f(t) = atpe−bt have the general shape as shown in Example 13.6.5.

SCIE1000, Section 13.6. Case Study 22: Wild, wild women Page 289



Wild, wild women (continued)

Question 13.6.7 The function modelling the blood concentration

of MPA is C(t) = 1.4t0.15e−0.02t.

(a) Find C ′. (Hint: the derivative of e−0.02t is −0.02e−0.02t. You

will also need to use the product rule.)

continued...
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Wild, wild women (continued)

Question 13.6.7 (continued) Recall that C(t) = 1.4t0.15e−0.02t,

with the following concentration graph:
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(b) Use your result from Part (a) to find tmax and Cmax, and compare

your answers with those in the table in Example 13.6.4. (You

may assume that C ′ = 0 only at Cmax.)
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Wild, wild women (continued)

• Now we will investigate the timing of a follow-up injection.

Example 13.6.8 If the minimum blood-concentration level for

reliable contraception is 0.3 ng/mL, calculate the time at which

concentration ceases to be reliable, accurate to 3 decimal places.

Answer: we have C(t) = 1.4t0.15e−0.02t. The equation to be solved

is C(t) = 0.3. Hence if we let f(t) = C(t)− 4 then we need to solve

f(t) = 0. We can do this using Newton’s method:

f(t) = 1.4t0.15e−0.02t − 0.3, so

f ′(t) = 1.4e−0.02t
(
0.15t−0.85 − 0.02t0.15

)
Finally, we use t0 = 50 as the initial estimate for the root.

Then when we substitute f , f ′ and t0 into Newton’s method and

iterate, on the fifth step the estimate of the root is

t5 ≈ 112.440.

Further iterations do not change this value significantly, so the time

is around 112 days, which is about 16 weeks.

The time recommended by the manufacturer for follow-up injections

is 12−13 weeks, which provides a reasonable safety margin.

Then we can develop a computer model.

Program specifications: Write a program which uses Newton’s

method to find the time at which the concentration of MPA decreases

to 0.3 ng/mL.
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Wild, wild women (continued)

Python Example 13.6.9

1 # Program to use Newton’s method to solve an equation.

2 from __future__ import division

3 from pylab import *

4

5 # Define the function for Newton’s method. Here it is

6 # the blood-concentration of MPA.

7 def func(t):

8 return 1.4 * t**0.15 * exp(-0.02*t) - 0.3

9

10 # Define the derivative of the function for Newton’s method.

11 def funcDash(t):

12 return 1.4 * exp(-0.02 * t) * (0.15 * t**-0.85 - 0.02 * t**0.15)

13

14 # Initialise variables

15 ctr = 0

16 newEst = 50

17 prevEst = 0

18 tolerance = 0.001

19 # Loop through steps of Newton’s method.

20 while abs (newEst - prevEst) > tolerance:

21 ctr = ctr + 1

22 prevEst = newEst

23 newEst = prevEst - func(prevEst) / funcDash(prevEst)

24 print ctr, round(newEst,3)

Python Example 13.6.10

Here is the output from running the above program:

1 1 89.769

2 2 108.467

3 3 112.302

4 4 112.44

5 5 112.44

End of Case Study 22.
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13.7 Forensic toxicology

• Forensic science is concerned with applying scientific techniques

to gather evidence relevant to legal cases.

• Forensic toxicology is the branch of forensic science which investi-

gates drugs, poisons and other substances in the body.

• Many legal systems rely heavily on evidence from forensic sci-

ence/toxicology units.

• One of the most common drugs of interest is alcohol, in the context

of motor vehicle accidents and violent crimes.

Extension 13.7.1 (From www.health.qld.gov.au)

“Forensic Toxicology provides services to confirm or eliminate

the possibility that alcohol, drugs or poisons may have con-

tributed to behavioural impairment, a criminal offence, accident

or death. This includes analysis of drugs or alcohol in blood

or urine in drink or drug driving matters. The main clients of

Forensic Toxicology are QPS [Queensland Police Service], the

criminal justice system, including the Courts, DPP [Director of

Public Prosecutions], LAQ [Legal Aid Queensland] and other

defence counsel, the Coronial system, Corrective Services De-

partment, Transport Department and Forensic Pathologists.”

Extension 13.7.2 (From www.michigan.gov)

“The Toxicology Unit analyzes biological samples for the pres-

ence of alcohol and drugs. Blood, urine, or tissue samples are col-

lected from subjects who have been charged with driving while

intoxicated, victims of poisoning or sexual assault, from medi-

cal examiners offices, or in other suspicious or unusual circum-

stances.... Nine forensic scientists analyze over 13,000 alcohol

and 2,500 drug cases per year, in addition to providing court

testimony on case results.”
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Extension 13.7.3 (From www.fsni.gov.uk)

“The alcohol team deals with the detection and quantification

of alcohol in body fluids and other liquids (for example samples

of drinks containing alcohol). Samples are received from drivers

suspected of drink driving, and post-mortem samples are sub-

mitted by the State Pathologist. In more complex cases such as

murder and rape, the team is required to give an opinion on an

alcohol concentration in the context of other information sup-

plied with regard to estimating what the level may have been at

an earlier time.”

Extension 13.7.4 (From www.aifs.gov.au/acssa/pubs/briefing/b2.html)

“To date, there has been only one forensic study conducted in

Australia to detect drugs in samples from victims specifically

reporting drink spiking to police. Toxicology tests conducted

by the Chemistry Centre in Western Australia between June

2002 and February 2003 on 44 cases of alleged drink spiking

detected none of the CNS depressants normally associated with

drink spiking, such as the benzodiazepines, GHB and ketamine

(although it was acknowledged that GHB is extremely difficult to

detect, even with early reporting). However, alcohol was present

in 75 per cent of samples, with 31 per cent of all cases showing

blood alcohol concentration levels in excess of 0.15 per cent.

In the majority of cases, the level of alcohol was significantly

higher than anticipated, based on the victim’s self-assessment of

consumption.”

Extension 13.7.5 (From www.abc.net.au)

“Research from drug experts and police arrest statistics shows

illegal substance abuse at schoolies has dropped, but binge drink-

ing has risen: 90 per cent of schoolies partying in Queensland

this week will consume alcohol, 25 per cent will smoke cannabis,

and 11 per cent will take ecstasy, trend figures indicate.”

SCIE1000, Section 13.7. Page 295



Question 13.7.6 Reconcile the following two statements:

(i) “The rate of elimination of alcohol by the body is roughly con-

stant in most situations. ”

(ii) “Elimination of alcohol from the body follows Michaelis-Menten

kinetics, where the rate of change of BAC due to elimination is:

V =
−VmB

Km +B

where Vm is the maximum rate at which that individual can

eliminate alcohol measured in % per time period, B is the BAC

at any time, and the Michaelis constant Km is the value of BAC

at which the rate of elimination equals one half of Vm. ”

(Hint: reasonable estimates are Km ≈ 0.003 % and Vm ≈ 0.015 %/h.

Sketch a rough graph of V for a range of values of B.)
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Question 13.7.7 In practice (particularly in legal cases), BAC

is often estimated using the Widmark formula (developed in 1932),

which states that

B =
A

rW
× 100%− V t

where B is the BAC at any time t since commencing drinking, A

is the amount of alcohol consumed in g, V is the rate at which the

body eliminates alcohol measured in % per time period, W is the

body weight in g and r is the Widmark factor which estimates the

proportion of body weight that is water. The precise value of r

depends on factors such as gender, age and percentage body fat.

Reasonable estimates are r ≈ 0.7 for males and r ≈ 0.6 for females.

(a) What is the physical meaning of the term rW?

(b) Why is the value of r for females typically less than for males?

(c) Verify that the units in the Widmark formula are consistent.

continued...
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Question 13.7.7 (continued) Recall that B =
A

rW
× 100%− V t.

(d) Justify Australian government guidelines which suggest that to

remain within the legal driving BAC range, within the first hour

“men should drink at most two drinks and women at most one”.

(e) Justify Australian government guidelines which suggest that to

remain within the legal driving BAC range, after the first hour,

“men and women should drink at most one drink per hour”.

continued...
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Question 13.7.7 (continued) Recall that B =
A

rW
× 100%− V t.

(f) Find B′ and compare your answer with the answer to Question

13.7.6.

(g) At Schoolies week, a (binge-drinking, Gen Y) female who weighs

60 kg rapidly consumes 10 standard drinks (each with 10 g pure

alcohol). Roughly sketch her BAC at any time, and estimate

when it will return to 0.
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Question 13.7.8 In the Widmark formula, the absorption term

assumes that alcohol is absorbed by the body immediately after

drinking. The following variant is given in a papera:

B =
A

rW
×
(
1− e−kat

)
× 100%− V t

where ka is the rate at which the body absorbs alcohol.

(a) Reconcile the Widmark formula with the variant. (Hint: draw

a graph of the revised absorption term.)

(b) If t is measured in hours, what are the units of ka?

(c) What factors could influence the value of ka for:

(i) a given person, at different times?

(ii) different people?

continued...

aPosey and Mozayani, The estimation of BAC, Widmark revisited, Forensic
Science, Medicine and Pathology, 3 (2007) 33–39.
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Question 13.7.8 (continued) In the units from Part (b), a typical

value of ka is 6. Recall that B =
A

rW
×
(
1− e−kat

)
× 100%− V t.

(d) Find the half-life for the absorption of alcohol.

(e) Find an expression for the time at which the BAC is at its peak

value. (Hint: if y(t) = e−kat then y′(t) = −kae
−kat.)

continued...
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Question 13.7.8 (continued) It has been shown that if alcohol is

consumed when the stomach contains food, then a typical value for

ka is 2.3 (compared with ka ≈ 6 for an empty stomach).

(f) Compare the maximum BACs and the times at which they occur

for an 80 kg male who consumes 4 standard drinks after he has

eaten, compared to not having eaten.

We can also develop a computer model.

Program specifications: Write a Python program which compares

the BAC graphs for males or females, of varying weights, having eaten

versus not having eaten. Plot graphs of both BACs.
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Python Example 13.7.9

1 # Program to compare BACs over 6 hours when drinking

2 # on a full stomach versus an empty stomach

3 from __future__ import division

4 from pylab import *

5

6 alcohol = input("How much pure alcohol is consumed (in g)? ")

7 weight = input("How much does the person weigh (in kg)? ")

8 gender = input("Type 1 if male, anything else for female? ")

9 if gender == 1:

10 r = 0.7

11 else:

12 r = 0.6

13 times = arange(0,6.1,0.1)

14 BAC1 = arange(0,6.1,0.1)

15 BAC2 = arange(0,6.1,0.1)

16 ka1 = 6

17 ka2 = 2.3

18 mult = alcohol / (r * weight * 1000) * 100

19

20 # Apply the equation for the required number of steps.

21 for i in arange(0,size(times)):

22 t = times[i]

23 BAC1[i] = mult * (1 - exp(-t * ka1)) - 0.015 * t

24 BAC2[i] = mult * (1 - exp(-t * ka2)) - 0.015 * t

25 if BAC1[i]<0:

26 BAC1[i] = 0

27 if BAC2[i]<0:

28 BAC2[i] = 0

29 plot(times,BAC1,’b-’,linewidth=3)

30 plot(times,BAC2,’k-’,linewidth=3)

31 grid(True)

32 xlabel("time (hours)")

33 ylabel("BAC (%)")

34 title("BAC for full stomach versus empty stomach")

35 text(0.7,0.04,"full stomach")

36 text(1,0.06,"empty stomach")

37 show()
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Here is the output from running the above program for an 80 kg male

consuming four standard drinks:

Question 13.7.10 Briefly discuss the previous graph and its im-

plications.
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Case Study 23:

CSI UQ

www.schoolies.org.au www.abc.net.au/news/stories/2009/02/11/2488677.htm

both from www.smh.com.au

• In Question 13.7.7 we introduced the Widmark factor r, which

estimates the proportion of body weight that is water.

• We said that reasonable values for this are r ≈ 0.7 for males and

r ≈ 0.6 for females.

• Researchers have proposed alternate formulae for more accurate

estimation of r for different individuals.
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CSI UQ (continued)

• Below are three methods for estimating the value of r for a female

with height H in m and weight W in kg (from, respectively,

Watson et al., J Stud Alcohol (1989); Forrest, J Forensic Science

Society (1986); Seidl et al., Int J Legal Med (2000)):

(a) r = 0.29218 +
12.666H

W
− 2.4846

W
;

(b) r = 0.8736− 0.0124W

H2
; and

(c) r = 0.31223− 0.006446W + 0.4466H.

Question 13.7.11 In December 2006, American actress Nicole

Richie was charged with driving under the influence of alcohol, after

driving the wrong way down a highway in Los Angeles. Her police

charge sheet shows that she was 1.55 m tall and weighed 38.5 kg.

(a) Would you expect her value of r to be more or less than 0.6

(which is the ‘standard’ value for females)? Why?

continued...
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CSI UQ (continued)

Question 13.7.11 (continued)

(b) Using each of the four possible values of r, estimate how many

standard drinks she could consume and remain within the legal

BAC limit for driving in California (the limit is 0.08%).

continued...

SCIE1000, Section 13.7. Case Study 23: CSI UQ Page 307



CSI UQ (continued)

Question 13.7.11 (continued)

(c) Comment on your answers to Part (b).

(d) Nicole Richie had previously been convicted on a similar charge

in 2002, after being caught driving at three times the speed limit.

On that occasion her BAC was 0.12%, and she told police that

all she had eaten that day was some French fries, and all she

had drunk was 1 shot of vodka. Assuming she told the truth,

and that her vodka contained one standard drink, then the only

explanation is that someone must have spiked her French fries

with alcohol; estimate the minimum amount of alcohol which

was in her French fries.
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CSI UQ (continued)

Question 13.7.12 Around midday on August 23 2008, a helicopter

crashed near the Mataranka rodeo grounds, 100 km south of Kather-

ine, in the Northern Territory. The pilot died on impact, and his

passenger was injured.

The Air Transport Safety Bureau reported that the pilot had at-

tended a social gathering in Katherine on the evening before the

accident, and had “drunk an unknown quantity of alcohol”. His

BAC was 0.254 percent at time of death.

Estimate (at a minimum) how many standard drinks he had con-

sumed the previous evening.
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CSI UQ (continued)

Question 13.7.13 The website www.drinkdrivinglawyer.com.au

quotes a case in which a male finished drinking at 11 pm. The po-

lice pulled him over at 11:10 pm, and his roadside BAC reading was

0.097. At 11:40 pm, he underwent a more accurate breath analysis

which showed a BAC reading of 0.06.

(a) Comment on this case; assume that he metabolises alcohol at

the standard rate. (At trial he was found not guilty.)

continued...
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CSI UQ (continued)

Question 13.7.13 (continued)

(b) At what time would his BAC have been at a maximum, and

what would the maximum value have been?
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CSI UQ (continued)

Question 13.7.14 In a thread about “the most you have ever

drunk” on the website www.schoolies.org.au, one responsible young

man posted “well, im a good 6’3 weigh about 80 ish k’gs so i can

hold my liquor pretty well, very well really lol downed a case last

night and was all sorts of wasted

records 40.. something, after the 20-30 mark u barely stand up let

alone count, ive also managed to down 9 full beers in one beer bong

yeah yeah alco i know i know beer is by no way the best place to get

pissed tho

spirits and other drinks are a whole nother story lol”

Estimate his peak BAC after drinking 40 beers, and how long after

drinking his BAC would return to 0. (Hint: one full-strength beer

contains 375 mL and is 5% alcohol by volume. The specific gravity

of pure alcohol is 0.789.)

End of Case Study 23.
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13.8 Space for additional notes
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14 Integrating rockets and drugs

So come and join us all you kids
for lots of fun and laughter
as Roger Ramjet and his men
get all the crooks they’re after.
Roger Ramjet, he’s our man
hero of our nation
for his adventures just be sure
and stay tuned to this station.

Artist: TV theme song

(www.youtube.com/watch?v=E7SqSNQeAFM)

The Starry Night (1889), Vincent van Gogh (1853 – 1890), Museum of Modern
Art, New York.

(Image source: en.wikipedia.org/wiki/Image:VanGogh-starry night ballance1.jpg)
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Introduction

In this section we will investigate two mathematical approaches which
initially appear to be quite dissimilar, but instead are closely related.

The first approach we will cover is integration, which is the reverse
of differentiation. Previously we studied various quantities and used
differentiation to calculate the rate at which they were changing. Suppose
instead that we only know the rate at which something is changing: what
can we deduce about its value? The mathematical concept that allows us
to do this is called an indefinite integral, and is an important tool in many
applications, such as rocket flight and population dynamics.

The second approach relates to measuring areas. In science, given an
equation that models some phenomenon, the area between that curve
and the x-axis often has an important and useful physical meaning. For
example, if y is an equation for the velocity of an object over time, then
the area between the graph of y and the x-axis between two points in
time represents the total displacement of the object between those times.
Similarly, given an equation for the concentration of a drug in the blood,
this area represents the “total exposure” of the body to the drug, which is
important in determining whether the drug will have the desired beneficial
impact, and whether the dose is potentially toxic.

Finally, we will see how the Fundamental Theorem of Calculus relates the
two concepts, and allows indefinite integrals to assist with calculations of
areas under curves.

Some of the examples/contexts we will discuss are:

• Simple motion.

• Hypersonic flight.

• Drug concentrations.

Specific techniques and concepts we will cover include:

• Integration and the indefinite integral.

• Areas and definite integrals.

• The Fundamental Theorem of Calculus.
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14.1 Integration and the indefinite integral

• All semester we have stressed the importance of studying change.

• The rate at which a function is changing can be calculated by

differentiating the function.

• It is often useful to be able to answer the reverse question: given

the rate at which some quantity is changing, can we find a function

for the quantity?

• The process of starting with a rate of change and finding the

function is called integration .�




�

	

Integration

A function F is called an indefinite integral or antiderivative of an-

other function f if the derivative of F is f ; that is, F ′(x) = f(x).

The process of finding an integral is called integration.

• You studied integration at school. In this course we will only

expect you to integrate some simple functions.

• It is much more important that you understand why integrals are

important.

• Note that when a function is differentiated, if the function has a

constant term then this term disappears. Hence when finding an

indefinite integral you need to include an unknown constant term.�
�

�
�

Constant of integration

Indefinite integrals include an arbitrary constant of integration,

usually written “+C” in the answer.
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Example 14.1.1 The integral of the function f(x) = 3x2 is the

function F (x) = x3 + C, where C is an arbitrary constant. (You

can check this answer by differentiating F .)

• There is a special notation for integration.�

�

�

�

The integral sign

Let f(x) be a function with integral F (x). Then the indefinite inte-

gral of f is defined by ∫
f(x) dx = F (x) + C

where C is the constant of integration.

The symbol

∫
is called the integral sign, and dx means that the

integration is to be performed with respect to the variable x.

Question 14.1.2 In each case find:

(a)
∫

3x2 + 6x+ 2 dx

(b)
∫

2ex + 10 dx

(c)
∫

0.02e0.02x dx

• Sometimes there is extra information that allows a specific value

to be assigned to the constant of integration C. This information

is often called an initial condition or boundary condition.
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Case Study 24:

Simple motion

In physics, rather than using the terms distance and speed, the more

usual expressions are displacement S(t) and velocity v(t), each of which

has an associated direction. Then v(t) = S ′(t) and a(t) = v′(t), where

a(t) is the acceleration at any time t. Thus:

• velocity can be found by integrating acceleration (possibly also

using some initial conditions); and

• displacement can be found by integrating velocity (again possibly

using some initial conditions).

Question 14.1.3 A ball is thrown vertically into the air at time

t = 0 s from a height 2 m above the ground with an initial velocity of

20 m s−1. The acceleration due to gravity on Earth is approximately

−9.8 m s−2. (Ignore air resistance and other similar forces.)

(a) Find the velocity of the ball at any time t.

(b) Find the displacement of the ball at any time t.

continued...
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Simple motion (continued)

Question 14.1.3 (continued)

(c) Find the maximum height the ball reaches.

(d) At what time does the ball reach the ground?

End of Case Study 24.
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14.2 Hypersonic flight and Newton’s laws of

motion

Case Study 25:

Hypersonic flight

• The concepts of integration and simple motion can be extended to

more complex scientific research projects.

• The University of Queensland is a world-leader in research on

modern rocket and jet propulsion systems, working with Boeing,

NASA, and the Australian and US Defence Departments.

• The HyShot program (initiated at UQ) is developing a new type

of jet, known as a scramjet (short for supersonic combustion

ramjet).
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Hypersonic flight (continued)

• Scramjets and ramjets work by using smooth curved surfaces to

compress air as it flows into the engine. As the air is compressed

it heats up, and by mixing it with some type of fuel (such as

hydrogen gas) the two gases will spontaneously ignite, accelerating

the scramjet.

• High velocities are typically classified into different categories,

relative to the speed of sound:

– Subsonic: slower than the speed of sound (334 m s−1);

– Sonic: at (or around) the speed of sound;

– Supersonic: travelling between one and five times the speed of

sound; and

– Hypersonic: more than 5 times the speed of sound.

• (The speed of sound varies depending on humidity, altitude and

temperature. The above measurement corresponds to dry air, sea

level, and 21◦ Celsius.)

• High speeds are commonly expressed as a Mach number, which is

the multiple of the speed of sound at which the object is travelling.

So hypersonic speeds begin at Mach 5.

• A key difference between scramjets and ramjets is that ramjets

slow the flow of air to subsonic speeds before combustion takes

place. Conversely, inside a scramjet combustion occurs while the

air is travelling faster than the speed of sound. Scramjets have the

potential to fly as fast as Mach 20.

• At these speeds it would be possible to travel between Sydney and

London in less than an hour!

• A limitation is that scramjets need to be travelling at supersonic

speeds before they begin to operate, which leads to a host of new

scientific and engineering problems.

SCIE1000, Section 14.2. Case Study 25: Hypersonic flight Page 321



Hypersonic flight (continued)�
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A typical scramjet test flight

A typical test flight for a scramjet involves attaching the engine to

a two-stage rocket, which is fired to a great height. After reaching

the peak of its trajectory, gravity accelerates the apparatus back

towards Earth. When it reaches a sufficiently high velocity, the

scramjet engine fires and the test is conducted. Finally, once the

experiment is complete, the apparatus falls back to Earth.

Example 14.2.1 Below is a flight log of a HyShot flight at the

Woomera Rocket Range, South Australia:

Time
(secs)

Action

0 Ignition of Stage 1.
0 − 6 Rocket accelerates at a rate equivalent to 22 times that

of gravity on Earth.
6 − 15 Rocket coasts until ignition of Stage 2.
15 − 41 Stage 2 accelerates rocket to 8300 km h−1.
46 Nose cone separates and continues upwards, while the

remainder falls back to Earth.
46 −
446

Nose cone continues travelling upward while re-aligning
itself for re-entry into the atmosphere. Maximum height
reached is about 330 km.

446 −
impact

The nose cone descends toward Earth using gravity to
accelerate it to scramjet ignition velocity, which occurs
at 35 km above ground.

Once the scramjet ignites it burns until it descends to a
height of 23 km, before shutting down and free-falling to
ground.
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Hypersonic flight (continued)

(For all of the following questions we will ignore wind resistance and

other similar forces.)

Question 14.2.2 When the rocket reaches a height of 330 km it

stops moving up and falls back towards Earth with its only accel-

eration due to gravity. Assume the acceleration due to gravity is

−9.8 m s−2.

(a) Find an expression for the height of the rocket above Earth at

any time after reaching the maximum height. (For simplicity,

let the time of maximum height be t = 0 s.)

continued...
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Hypersonic flight (continued)

Question 14.2.2 (continued)

(b) Find the velocity of the rocket when the scramjet fires at 35 km.

• In the previous calculation we erroneously assumed that the

acceleration due to gravity is a constant −9.8 m s−2.

• However, as the distance from Earth changes, so does the acceler-

ation due to gravity. At low altitudes this change can be ignored,

but the difference is substantial at high altitudes.

• In Question 4.4.1 we showed the acceleration due to gravity at

height 330 km above the surface of Earth is about −8.87 m s−2.

• A simple way to more accurately calculate the velocity at height

35 km is to find the arithmetic average of the acceleration due to

gravity at heights 330 km and 35 km, and assume the acceleration

equals this average as the rocket falls between these heights.

Question 14.2.3

(a) Estimate the average acceleration as the rocket travels from a

height of 330 km to a height of 35 km. (Hint: The acceleration

due to gravity at height 35 km is −9.709 m s−2.)

continued...
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Hypersonic flight (continued)

Question 14.2.3 (continued)

(b) Estimate the velocity of the rocket when the scramjet engine

fires at height 35 km. Compare your answer to that in Part (b)

of Question 14.2.2.

• The result in Question 14.2.3 is reasonably accurate, but incorrectly

assumes that the acceleration due to gravity changes at a constant

rate as the rocket descends. In reality, acceleration changes

according to the square of the distance from the centre of Earth

(not linearly with the distance).

• Integration and Newton’s Gravitation Law give the following

equation for the velocity of the rocket v(r) during its descent from

an initial height H, dependent only on the height r of the rocket:

v(r) = −

√
2GMe

(
1

r +Re

− 1

H +Re

)
Question 14.2.4 Substituting values into the previous formula

gives the velocity of the rocket at height 35 km as −2340.15 m s−1.

Compare this with your answers to Questions 14.2.2 and 14.2.3.

End of Case Study 25.
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14.3 Areas and definite integrals

• Given an equation which models some phenomenon, the area

between the curve and the x-axis often has an important and

useful physical meaning.

Question 14.3.1 Consider a car moving with a constant velocity

of v = 10 m s−1.

(a) Calculate the displacement of the car between times t = 0 s and

t = 5 s; include units.

(b) Draw a rough sketch of the graph of v between those times.

(c) Calculate the area between the graph of v and the x-axis between

those times; include units.

(d) Compare your answers from Parts (b) and (c).
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Question 14.3.2 In Question 14.1.3, a ball was thrown vertically

with velocity v(t) = −9.8t+ 20 m s−1.

(a) At what time T does the ball reach its maximum height?

(b) Draw a rough sketch of the graph of v between t = 0 and t = T .

(c) Calculate the area between the graph of v and the graph of the

x-axis between those times.

(d) Compare your answers from Part (c) and Question 14.1.3(c).
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• This is not a coincidence: given a velocity graph, the area bounded

by that graph, the x-axis and two time points on the x-axis, equals

the total displacement between those times.

• We will see later that this is also true for graphs of phenomena

other than velocity.

• For more complicated graphs, calculating the area can be quite

difficult.

• At school you will have approximated areas under curves by

summing the areas of rectangles of “narrow” width; this is called

the Riemann sum .

• You may have also used variants which aim to increase accuracy,

such as middle sums, Simpson’s rule or the trapezoid rule.

• There is a special notation used to describe the area under a curve.�

�

�

�

Definite integrals

Given a function f(x), the area under the curve (AUC) from a point

x = a to a point x = b is called the definite integral of f(x) from a

to b, and is written

∫ b

a

f(x) dx.

Example 14.3.3 In Question 14.3.2 we used areas to calculate∫ T

0

−9.8t+ 20 dt.

• Riemann sums are often used to estimate AUCs when an equation

is not known but some data values have been measured.

• Indeed, unlike in mathematics practise problems from school, in

most cases in real life, Riemann sums are only used when an

equation is not known.
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Question 14.3.4 In Example 13.2.3, the measurements of the

blood-concentration of nicotine of a person at various time intervals

after smoking a cigarette were as follows:

t (min.) 0 5 10 15 20 25 30

C(t) (ng/mL) 4 12 17 14 13 12 11

t (min.) 45 60 75 90 105 120

C(t) (ng/mL) 9 8 7.5 7 6.5 6

� ��� ��� ��� ��� ����� ����� �	���

��������������

�

�

�

�

�

���

���

�	�
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%&

(a) What are the units of the AUC?

(b) What does the AUC represent?

(c) Why is this significant?

continued...
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Question 14.3.4 (continued)

(d) Use Riemann sums to estimate the total AUC of this graph.

Now we can develop a computer model.

Program specifications: Write a Python program which uses left

sums, right sums and middle sums to estimate the area under the

nicotine concentration curve. The program must output the estimated

area, and draw a graph showing the rectangles used in the sums.
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Python Example 14.3.5

1 # Program to use Riemann sums to calculate

2 # area under a nicotine concentration curve.

3

4 from __future__ import division

5 from pylab import *

6

7 # Initialise variables

8 type = input("Type: 1 for left sum, 2 for right, 3 for middle: ")

9 t = array([0, 5, 10, 15, 20, 25, 30, 45, 60, 75, 90, 105, 120])

10 concs = array([4, 12, 17, 14, 13, 12, 11, 9, 8, 7.5, 7, 6.5, 6])

11 area = 0

12

13 # Sum the areas in each rectangle

14 for i in arange(1,size(t)):

15 width = t[i] - t[i-1]

16 if type == 1:

17 height = concs[i-1]

18 elif type == 2:

19 height = concs[i]

20 else:

21 height = (concs[i-1] + concs[i])/2

22 area = area + height * width

23

24 # Plot each rectangle

25 rectX = array([t[i-1], t[i-1], t[i], t[i]])

26 rectY = array([0, height, height, 0])

27 plot(rectX, rectY, ’k-’)

28

29 # Give the output.

30 print "The estimated AUC is",area,"ng min / mL"

31

32 plot(t, concs, ’r-’, linewidth=1)

33 plot(t, concs, ’bo’, markersize=8)

34 xlabel("Time (mins)")

35 ylabel("Nicotine concentration (ng/mL)")

36 title("Blood concentration of nicotine")

37 show()
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Python Example 14.3.6

Here is the output from running the above program three times:

1 Type: 1 for left sum, 2 for right, 3 for middle: 1

2 The estimated AUC is 1095.0 ng min / mL

3

4 Type: 1 for left sum, 2 for right, 3 for middle: 2

5 The estimated AUC is 1055.0 ng min / mL

6

7 Type: 1 for left sum, 2 for right, 3 for middle: 3

8 The estimated AUC is 1075.0 ng min / mL

Here is the graph for the left sum.
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14.4 The Fundamental Theorem of Calculus

• In the last few sections we have covered:

(1) indefinite integrals,

∫
f(x) dx, which are solved using an-

tiderivatives; and

(2) definite integrals,

∫ b

a

f(x) dx, which are calculated by measur-

ing AUCs.

• These two concepts are useful precisely because they represent a

range of important physical phenomena. For example:

– velocity is the antiderivative of acceleration, and displacement

is the antiderivative of velocity; and

– the overall exposure of the body to a drug is measured by the

area under the concentration curve.

• Our discussions so far have not demonstrated any apparent links

between indefinite integrals and definite integrals. However, a very

important theorem shows that there is a very close link.�

�

�

�

The Fundamental Theorem of Calculus

The definite integral of the rate of change of a function F be-

tween two points equals the net change in the value of F between

the two points. That is:∫ b

a

F ′(x) dx = F (b)− F (a)

�

�

�

�

What this means

The Fundamental Theorem is important for the following reason.

Consider some phenomenon, and let f be a function which mod-

els that phenomenon. Then the area under the curve between two

points can be calculated without needing to sum the areas of rect-

angles. Instead, find an antiderivative of f , substitute the values of

the points into the antiderivative, and then subtract.
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Example 14.4.1 Some examples include:

(1) Let V (t) be the volume of water in a reservoir at time t, so V ′(t)

is the rate of inflow/outflow at any time. Then∫ t2

t1

V ′(t) dt = V (t2)− V (t1)

is the net change in total volume from time t1 to time t2.

(2) If the population size of a bacterial colony changes at a rate of

P ′(t) (allowing for births, deaths and migration), then∫ t2

t1

P ′(t) dt = P (t2)− P (t1)

is the net change in population from time t1 to time t2.

(3) Let [C](t) be the concentration of the product C of a chemical

reaction at time t, so [C]′(t) is the rate of reaction. Then∫ t2

t1

[C]′(t) dt = [C](t2)− [C](t1)

is the net change in concentration from time t1 to time t2.

Question 14.4.2 In Question 14.3.2 we used areas to calculate∫ T

0

−9.8t+ 20 dt

where T is the time at which the ball reaches its highest point. Use

the Fundamental Theorem to do the calculation.
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Case Study 26:

Dying for a drink

• In the previous chapter on derivatives, we considered short-term

risks associated with alcohol consumption (such as accidents).

• There are also many negative long-term health effects, with risk

increased by both frequency and volume of consumption.

www.nt.gov.au/health
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Dying for a drink (continued)

Question 14.4.3 In Question 13.7.7, we said that blood alcohol

concentrations (BACs) are often estimated using the Widmark for-

mula. For a 70 kg man drinking n standard drinks (each containing

10 grams of alcohol), the formula says that at time t in hours since

commencing drinking, his estimated BAC % is

B =
10n

490
− 0.015t.

(a) At what time will his BAC return to 0?

(b) Define his total exposure to alcohol E as the AUC of B from

t = 0 until his BAC again reaches 0. Find an expression for E.

continued...
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Dying for a drink (continued)

Question 14.4.3 (continued) Assume that the long-term damage

to his internal organs is proportional to his total exposure to alcohol

E. (This is simplistic, but not unreasonable.)

(c) Discuss the impact on E of “one extra drink for the road”.

(d) One 70 kg man consumes two standard drinks every day, and a

second consumes 14 standard drinks once a week, but does not

drink at any other time. Estimate the value of E for each.

continued...
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Dying for a drink (continued)

Question 14.4.3 (continued)

(e) Comment on your results to Part (d). What are some ramifica-

tions of these results (for example, for binge drinking)?

(f) Earlier we said it was “simplistic but not unreasonable” to as-

sume that long-term organ damage from alcohol is proportional

to E. What are some of the simplifying assumptions in this

statement?

We can also develop a computer model.

Program specifications: Write a Python program which uses the

Widmark formula to graph the total exposure to alcohol of a 70 kg

man consuming from 0 to 15 standard drinks, and also prints out the

relative exposure to alcohol compared with consuming 2 drinks.
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Dying for a drink (continued)

Python Example 14.4.4

1 # Program to use the Widmark formula to estimate

2 # the "exposure to alcohol" for a 70 kg man, being the

3 # total AUC for the BAC curve. The program also prints

4 # the relative total exposure compared to 2 drinks.

5

6 from __future__ import division

7 from pylab import *

8

9 # Initialise variables

10 drinks = arange(0,16)

11 areas = 1.0 * arange(0,16)

12 weight = 70000

13 water = 100 / (weight * 0.7)

14

15 # Estimate E for each number of drinks.

16 for numd in drinks:

17 tBAC0 = 10 * numd / (0.015 * water)

18 areas[numd] = 10 * numd * tBAC0 / water - 0.0075 * tBAC0**2

19

20 # Output the relative exposure compared with 2 drinks

21 print "# Exposure relative to 2 drinks"

22 for numd in drinks:

23 ratio = areas[numd] / areas[2]

24 print numd," ",round(ratio,1)

25

26 # Draw graph

27 plot(drinks, areas, ’bo’, markersize=8)

28 grid(True)

29 xlabel("Number of drinks")

30 ylabel("Total exposure (% hours)")

31 title("Total exposure to alcohol")

32 show()
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Dying for a drink (continued)

Python Example 14.4.5

Here is the output from running the above program:

1 # Exposure relative to 2 drinks

2 0 0.0

3 1 0.3

4 2 1.0

5 3 2.3

6 4 4.0

7 5 6.3

8 6 9.0

9 7 12.3

10 8 16.0

11 9 20.2

12 10 25.0

13 11 30.3

14 12 36.0

15 13 42.3

16 14 49.0

17 15 56.3

End of Case Study 26.
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Case Study 27:

Sweet Peas

bbc.co.uk www.thedailygreen.com dsc.discovery.com

• Diabetes mellitus is a chronic disease, increasingly afflicting

societies with a “western lifestyle”; once contracted it is typically

permanent.

• Data from the Framingham study (which we saw early in semester)

shows that “among those aged 50 and older, diabetic men lived an

average of 7.5 years less than men without diabetes, and diabetes

reduced women’s life expectancy by an average of 8.2 years”.

• There is a close relationship between diabetes and AUCs!

Example 14.4.6 (From access.health.qld.gov.au.) “Diabetes mel-

litus is a condition where the body cannot maintain normal blood

glucose levels. Glucose is the main source of fuel for the body.

Glucose is made by the breakdown of carbohydrate.

Insulin is a hormone that helps glucose move from the blood into

the cells. When the body does not produce enough insulin, the

cells cannot use glucose and the blood glucose level rises. Three

main types of diabetes affect Australians - type 1 (previously known

as insulin-dependent diabetes), type 2 (previously known as non-

insulin-dependent diabetes) and gestational diabetes mellitus.

Diabetes affects an estimated 940,000 Australians, and about half

of these are not aware they have the disease. If undetected or poorly

controlled, diabetes can lead to blindness, kidney failure, lower limb

amputation, heart attack, stoke and impotence.”
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Sweet Peas (continued)

• An Oral Glucose Tolerance Test (OGTT) is a common test for

diabetes.

• Prior to taking the test, patients fast for around 12 hours, then a

measured oral dose of glucose is administered.

• Blood-glucose levels are measured immediately prior to ingestion

of the glucose and at various intervals for 2 hours afterwards.

• The following graph shows glucose tolerance curves for a normal

person and one with non-insulin-dependent diabetes mellitus

(NIDDM; Type 2 diabetes). The dotted lines indicate the range of

glucose concentrations expected in a normal individual.

themedicalbiochemistrypage.org/diabetes.html

• The following table shows blood-glucose levels adopted by the

World Health Organisation as indicators of: Impaired Fasting

Glycaemia (IFG); Impaired Glucose Tolerance (IGT; sometimes

called pre-diabetes); and Diabetes Mellitus (DM).

Normal IFG IGT DM
Levels t = 0 t = 2 t = 0 t = 2 t = 0 t = 2 t = 0 t = 2

mmol/L < 6.1 < 7.8 ≥ 6.1, < 7.8 < 7.0 ≥ 7.8 ≥ 7.0 ≥ 11.1
< 7

mg/dL < 100 < 140 ≥ 100, < 140 < 126 ≥ 140 ≥ 126 ≥ 200
< 126
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Sweet Peas (continued)

• Many researchers believe AUC for a glucose tolerance curve is

closely linked to the amount and frequency of food consumption,

and is an indicator of general diet-related health.

Example 14.4.7 A papera investigated links between blood-

glucose levels, appetite and weight gain, and states:

“Weight losses, even modest, have repeatedly been associated with an improve-
ment of the metabolic profile of the obese. Indeed, [the graph] shows the curves
and areas under the curve (AUC) of plasma glucose in response to an OGTT in
male obese participants before and after a weight-loss programme up to a state
of plateau consisting of a supervised diet and exercise clinical intervention. A
mean loss of 11.5 kg of body weight (93.9% from fat stores) was achieved over 7
months of intervention. As expected, the AUC to the oral glucose challenge was
considerably reduced at the end of the programme. Even if the metabolic fitness
of individuals who underwent this intervention was substantially improved, it
is of importance to note the impact of this strategy on blood glucose at the
end of the oral glucose challenge. Indeed, at the 180th minute of this test, the
glycemia was significantly lower than that before treatment.”

www.nature.com/ijo/journal/v33/n1/full/ijo2008221a.html

aChaput and Tremblay, The glucostatic theory of appetite control and the
risk of obesity and diabetes, International Journal of Obesity 33 (2009) 46–53.

SCIE1000, Section 14.4. Case Study 27: Sweet Peas Page 343



Sweet Peas (continued)

Question 14.4.8 Peter took 22 measurements of his blood-glucose

levels at ten minute intervals from 6 am until 9:30 am, having not

eaten for the previous 10 hours. At 7:10 am he commenced eating

breakfast. A graph of his measurements is as follows:
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(a) Comment on the graph and the measured values.

(b) Estimate the total mass of glucose (molar mass 180.16 g/mol)

in Peter’s blood at the time of peak concentration.

End of Case Study 27.
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Case Study 28:

Hi GI!

• The Glycaemic Index or GI of foods is often mentioned in marketing

campaigns and in association with dietary health claims. GIs are

defined in terms of AUCs for blood-glucose curves.

Example 14.4.9 (From www.glycaemicindex.com.)
“The glycaemic index (GI) is a ranking of carbohydrates on a scale from
0 to 100 according to the extent to which they raise blood sugar levels
after eating. Foods with a high GI are those which are rapidly digested
and absorbed and result in marked fluctuations in blood sugar levels.
Low-GI foods, by virtue of their slow digestion and absorption, produce
gradual rises in blood sugar and insulin levels, and have proven benefits
for health. Low GI diets have been shown to improve both glucose and
lipid levels in people with diabetes (type 1 and type 2). They have
benefits for weight control because they help control appetite and delay
hunger. Low GI diets also reduce insulin levels and insulin resistance.

To determine a food’s GI rating, measured portions of the food contain-
ing 10 - 50 grams of carbohydrate are fed to 10 healthy people after an
overnight fast. Finger-prick blood samples are taken at 15-30 minute
intervals over the next two hours. These blood samples are used to con-
struct a blood sugar response curve for the two hour period. The area
under the curve (AUC) is calculated to reflect the total rise in blood
glucose levels after eating the test food. The GI rating (%) is calculated
by dividing the AUC for the test food by the AUC for the reference food
(same amount of glucose) and multiplying by 100. The use of a standard
food is essential for reducing the confounding influence of differences in
the physical characteristics of the subjects. The average of the GI ratings
from all ten subjects is published as the GI of that food.”
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Hi GI! (continued)

Question 14.4.10 The following graph shows measured blood-

glucose levels after consuming meals of: ‘bread only’; and ‘bread

and almonds’ The GI of ‘bread only’ is about 71. Calculate the

(approximate) GI of ‘bread and almonds’.

End of Case Study 28.

SCIE1000, Section 14.4. Case Study 28: Hi GI! Page 346



14.5 Space for additional notes
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15 Populations and differential equations
All things bright and beautiful,
All creatures great and small,
All things wise and wonderful,
The Lord God made them all.
Each little flower that opens,
Each little bird that sings,
He made their glowing colours,
He made their tiny wings.

uArtist: Cecil Alexander (www.youtube.com/watch?v=KLfkL8uDuc8)

The Entry of the Animals
into Noah’s Ark (1613), Jan
Brueghel the Elder (1568 –
1625), The J. Paul Getty Mu-
seum, Los Angeles. (Image
source: www.getty.edu)

Anthonie van Leeuwenhoek (1670),
Jan Verkolje (1650 – 1693), Rijksmu-
seum, Amsterdam. (Image source:
commons.wikimedia.org)
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Introduction

Throughout semester we have investigated how change is a fundamental
part of many systems, and the importance of being able to represent and
model change. Differentiation and integration allow us to do this.

Of course, modelling change is often more complex than we have considered
so far. Most of the time, the phenomenon will be described by one or more
equations that include the value of the phenomenon, its derivatives, and
sometimes other factors. These equations are called differential equations or
DEs. A number of the techniques and phenomena we have studied already
are in fact closely related to DEs.

You will need to understand how to formulate and describe DEs, and how
to interpret their solutions. This section covers an introduction to DEs
and their solutions, and how they can be applied to modelling a number of
phenomena.

Some of the examples/contexts we will discuss are:

• Unconstrained growth of algae and bacteria.

• Newton’s Law of Cooling.

• Alcohol.

• Constrained growth of a fish population.

• Modelling growth of cancer tumours.

Specific techniques and concepts we will cover include:

• Exponential DE.

• Stable points.

• Logistic DE.

• Euler’s method.
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15.1 Introduction to differential equations

• Understanding how objects and processes change allows predictions

to be made about the future.

• In many cases, it is possible to measure or make inferences about

the rate at which some phenomenon is changing.

• If an equation can be written representing the rate at which

a phenomenon is changing, then it is often possible to use

mathematical techniques to solve those equations and make

predictions about the future values.

Example 15.1.1 If a ball is dropped from a building at time t = 0,

then the rate of change of its velocity is −9.8 m/s2 (recalling that

the rate of change of velocity is acceleration).

If v(t) is the unknown velocity at any time t then

v′(t) = −9.8.

We can use integration to solve for v, giving v(t) = −9.8t m/s at

any time t in seconds.

• In Example 15.1.1, we started with an equation for the rate at

which the function v is changing, and used integration to find the

value of the function.

• This was easy to do, because the rate at which v is changing

is only dependent on the value of t.

• This is (probably) true of every integration question you have ever

studied or solved: you will always have integrated functions of a

single variable x or t.
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• In science (and many other disciplines including engineering,

business and the social sciences), models are not always this

simple.

• Many phenomena do not just change according to the time. For

example, their rate of change may be influenced by the value they

currently have, or to the value that some other phenomenon

has, or even the rate at which the other phenomenon is changing.

• Equations that relate rates of change to the value of a function

(and possibly other properties) are called differential equations.

�

�

�

�

Differential equation

If y is an unknown function of t, then a differential equation or

DE is an equation that involves a combination of t, y and/or the

derivatives of y.

If the DE is true when a particular function y and its derivative(s)

are substituted into the DE then y is called a solution to the DE.

Some DEs can be solved analytically, giving an exact solution. Many

other DEs cannot be solved exactly, and instead require numerical

methods to give approximate solutions.

• Make sure you understand what a DE actually is. In all of the

examples we will study, the DE will be of the form y′ = . . ..

• Then a solution to the DE will be another function which,

when substituted into the DE, makes the DE true.

• We will study some important DEs. In each case we will:

– describe the phenomenon being modelled;

– discuss how to represent the phenomenon with a DE;

– understand what the DE is saying;

– solve the DE and interpret its solution.
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15.2 DEs and exponential growth and decay

• Earlier we studied exponential growth and decay. On Page 231 we

said “Any phenomenon which changes at a rate proportional to

the current amount follows an exponential function”.

• This occurs precisely because such phenomena satisfy simple DEs

whose solutions are exponential functions.

Question 15.2.1 In Question 11.2.2 we studied an algae population

growing at 2% per hour. If N(t) is the population of algae per mL

of water at time t in hours then the population size satisfies the DE

N ′ = 0.02N.

(a) Explain carefully, in words, what this DE is saying.

(b) Show that N(t) = Ae0.02t is a solution to the DE, where A is a

constant.

(c) If we know that the population at time t = 0 hours is 500 algae

per mL of water, find the population at any time t.
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DE for exponential growth and decay

Any function N(t) with rate of change at any time proportional to

the value of N , with change constant r per time period, is modelled

by the DE N ′ = rN .

The solution to this DE is N(t) = N0e
rt , where N0 is the value of

N at time 0.

Question 15.2.2 Demonstrate mathematically why the solution

to the DE N ′ = rN is the exponential function.

Example 15.2.3 Every exponential function we have studied dur-

ing semester arises from this DE, including:

• the growth during an algal bloom in Question 11.2.2;

• radioactive decay of Strontium-90 in Question 11.2.6;

• radiocarbon dating in Question 11.2.8;

• the cooling of hot water in Question 11.2.11; and

• the concentration of caffeine in the blood in Question 13.6.2.

Other phenomena which arise from very similar DEs include:

• learning curves, used by psychologists to model the rate at

which an individual learns new material; and

• Newton’s law of cooling, which models the rate at which the

temperature of an object changes to match the temperature of

its surroundings.
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Case Study 29:

Poo

From: http://emu.arsusda.gov/default.html

• Escherichia coli (usually shortened to E. coli) is a bacterium

commonly found in the lower intestine of warm-blooded animals,

including humans.

• Most strains of E. coli are harmless in the digestive system, or

even beneficial to the host individual.

• However, some strains do produce toxins, and can cause food

poisoning, gastrointestinal infections and urinary tract infections.

• One such strain is O157:H7; this was linked to illness outbreaks in

Washington and California in 1994, from contaminated salami.

• Because E. coli can survive outside the body for some time,

tests for E. coli are often used to indicate the presence of faecal

contamination in environmental samples or in food hygiene checks.

• Under simplifying assumptions (such as comparatively unlimited

resources) the rate of increase of a population of E. coli at any

time is proportional to the population size at that time.

• Hence the population follows an exponential function, and it makes

sense to discuss the doubling time of the population.

• Under favourable conditions, the doubling time for a population of

E. coli may be an hour, or even shorter.

• This rapid growth rate is one reason why good hygiene standards

are important in food preparation.
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Poo (continued)

• When studying populations of bacteria, microbiologists commonly

count colony-forming units (CFU), which is the number of viable

(live) bacterial cells present.

• This method differs from direct counts of individuals, which include

both dead and living cells.

Question 15.2.4 A population of E. coli in a contaminated food

sample changes with growth constant r = 1 per hour; assume that

the sample contains 103 CFU per g at time 0.

(a) Write a DE for the population size E(t) in CFU per gram at

any time t in hours.

(b) Solve the DE in Part (a).

(c) Estimate the population size after 6 hours.

• A recent papera investigates E. coli contamination of pre-cooked

meat products (specifically ham) during the slicing process.

• The study models two sources of contamination:

– from a slicing blade infected with E. coli to clean ham; and

– from ham infected with E. coli, to a clean slicing blade, then to

clean ham.
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Poo (continued)

One of the research experiments involved:

• inoculating (infecting) ham with “7 log CFU of O157:H7 E. coli”

(that is, 107 CFU);

• using a clean blade to slice the inoculated ham;

• using that blade to cut 100 slices of clean ham; and

• counting the number of CFU on each of the 100 slices.

Question 15.2.5 If x is the number of the slice from 1 to 100, then

log10 of the number of CFU on each slice Y (x) is modelled by

Y = 2.793× e−0.0105x.

(a) Roughly how many CFU were on Slice 1 and on Slice 100?

(b) Find an expression for the number of CFU on any slice of ham

after any number of hours, assuming the slices are stored under

ideal growing conditions for E. coli.
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Poo (continued)

Extension 15.2.6 (From www.lshtm.ac.uk, 15/10/2008.)

“The further north you go [in the UK], the more likely you are to have
faecal bacteria on your hands, especially if you are a man, according
to a preliminary study conducted by the London School of Hygiene
& Tropical Medicine.

But women living in the South and Wales have little to feel smug
about. In London, they are three times as likely as their men folk to
have dirty hands, and in Cardiff, twice as likely. The men of London
registered the most impressive score among all those surveyed, with
a mere 6% found to have faecal bugs on their hands. Overall more
than one in four commuters have bacteria which come from faeces on
their hands. . .

The results indicated that commuters in Newcastle were up to three
times more likely than those in London to have faecal bacteria on
their hands (44% compared to 13%). . . Commuters in Liverpool also
registered a high score for faecal bacteria, with a contamination rate
of 34%. In Newcastle and Liverpool, men were more likely than
women to show contamination (53% of men compared to 30% of
women in Newcastle, and 36% of men compared to 31% of women in
Liverpool). . .

The bacteria that were found are all from the gut, and do not nec-
essarily always cause disease, although they do indicate that hands
have not been washed properly.

Dr Val Curtis, Director of the Hygiene Centre at the London School
of Hygiene & Tropical Medicine, comments: ‘We were flabbergasted
by the finding that so many people had faecal bugs on their hands.
The figures were far higher than we had anticipated, and suggest that
there is a real problem with people washing their hands in the UK.
If any of these people had been suffering from a diarrhoeal disease,
the potential for it to be passed around would be greatly increased
by their failure to wash their hands after going to the toilet’. ”
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Poo (continued)

• Consider a DE which models some phenomenon. The general

solution to the DE (together with initial conditions) predicts the

values of the phenomenon at various times.

• Scientists are often interested in stable points.�

�

�

�

Stable points

The general solution y to a DE may have one or more stable points

(which are also called fixed points or equilibrium values), which are

points at which y′ = 0 . If the phenomenon ever reaches one of

these values, it will indefinitely remain equal to that value.

Question 15.2.7 Why are stable points scientifically important?

Question 15.2.8 In Question 15.2.4 we considered a population of

E. coli bacteria which satisfied the DE E ′ = E.

(a) Find all stable population sizes.

(b) Interpret your answer to Part (a).

End of Case Study 29.
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• Many other phenomena satisfy the exponential DE. Here are two

examples.

Question 15.2.9 When an object with one temperature is moved

to an environment with a different temperature, the temperature of

the object changes according to Newton’s Law of Cooling. Assume a

small object is placed in a room with temperature equal to a constant

T . Let y(t) be the temperature of the object at any time t.

(a) Derive a DE for the rate of temperature change of the object.

(b) Your equation should include a constant, say k. What physical

factors would determine the value of k?

continued...
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Question 15.2.9 (continued) In Question 11.2.11 we considered hot

water placed in a room with temperature 25 ◦C. The temperature

y(t) in ◦C at any time t in minutes was modelled by:

y(t) = 60e−0.05t + 25.

(c) Show that this is the solution to the DE y′ = −0.05(y− 25) and

relate this to Newton’s Law of Cooling.

(d) Find all stable solutions and explain your answer.
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Question 15.2.10 When alcohol is consumed, most of it is absorbed

into the bloodstream via the small intestine. The rate of absorption

is proportional to the amount which is in the digestive tract at any

time.

(a) Assume an individual consumes A grams of pure alcohol. Write

a DE for the rate of change of the amount of alcohol D in the

digestive system at any time, and solve the DE.

(b) Find an expression for the total amount of alcohol that has been

absorbed by the body at any time, ignoring elimination.

continued...
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Question 15.2.10 (continued)

(c) Find an expression for blood-alcohol content (BAC) if the

drinker weighs W kg, and a fraction r of their weight is wa-

ter. (Hint: ignore elimination, and remember to convert BAC

to a percentage.)

(d) If the body can eliminate alcohol at a constant rate of V % per

hour, find an expression for the BAC at any time t in hours.

(e) Compare your answer to the equation given in Question 13.7.8.
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15.3 DEs and constrained logistic growth

• Any phenomenon which always changes at a rate proportional to

its value follows an exponential function.

• Exponential growth functions are unconstrained ; that is, they

continue growing indefinitely.

Question 15.3.1 Let N(t) be the size of a fish population in a

certain lake at any time t in months. If the natural rate of increase

of the fish population is 10% per month, then N(t) satisfies the

differential equation N ′ = 0.1N . Assume that at time 0 there are 30

fish.

(a) Draw a rough sketch of the population over time predicted by

the given DE.

(b) Environmental analysis has shown that the maximum fish pop-

ulation the lake can support is 1000. Given this, what do you

think is a more realistic rough sketch of N(t) over time?
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Question 15.3.2 Give some reasons why the exponential DE is

often inaccurate (and even impossible) in modelling, particularly

over long time periods.

• During unconstrained exponential growth, the proportional rate

of increase is constant at all times, irrespective of the population

size.

• This is often quite accurate over some time periods.

• However, in most cases populations cannot continue to show

unconstrained growth: there is a maximum population size that

can be supported by the conditions and resources.�

�

�

�

Carrying capacity

The carrying capacity of an ecosystem for a particular organism

is the maximum population that can be supported by the resources

within the ecosystem. Resources may include food, water, shelter

and sunlight.

A population size below the carrying capacity will typically increase

towards the carrying capacity, whereas a population size above the

carrying capacity will typically decrease to the carrying capacity.

• The carrying capacity for a particular organism often changes over

time; for simplicity, we will assume it remains constant.
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• In more sophisticated population models than the exponential

model, the rate of change in the population will:

– increase as the population size gets bigger and there are more

individuals who can reproduce; and

– decrease as the population size gets closer to the carrying

capacity and individuals compete for scarce resources.

• One such model that reflects these features is the logistic model.

• The power of the logistic model is the way in which the two

opposing growth and competition factors interact.

Question 15.3.3 The logistic DE is

N ′ = r N

(
K −N
K

)
where N(t) is an unknown function (such as a population), r is the

unconstrained growth rate and K is the carrying capacity. Explain

carefully, in words, what this DE is saying.

In particular, what is the significance of the term

(
K −N
K

)
?

• Just as it is possible to solve the exponential DE, it is also possible

to find a solution to the logistic DE.
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Solution to the logistic DE

Any function N(t) that changes at a rate proportional to the value

of the function (with unconstrained growth rate r), and also in

reverse proportion to how close the value is to a carrying capacity

K, is modelled by the logistic DE

N ′ = r N

(
K −N
K

)
.

If N0 is the value of N at time 0 then the solution to this DE is

N(t) =
KN0

N0 + (K −N0)e−rt

Question 15.3.4 From the equation for N ′, explain why the solu-

tion to the logistic DE displays the following properties. If the initial

population is:

(a) much less than the carrying capacity, then the population ini-

tially grows approximately exponentially.

(b) close to the carrying capacity, then the population grows slowly

towards the carrying capacity.

(c) more than the carrying capacity, then the population declines

exponentially towards the carrying capacity.
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Case Study 30:

Fish and the logistic model

• The logistic model applies to many types of population. It is

commonly used to model fish populations, and can be extended to

model fish harvest rates and stock management.

Example 15.3.5 A certain species of fish with an unconstrained

population growth rate of 10% per month is living in a lake with a

carrying capacity of K=1000 fish. Assume that this species follows

the logistic model, and that the initial population is N0 = 30 fish.

The function for the fish population N(t) at time t in months satis-

fies the DE

N ′ = 0.1 N

(
1000−N

1000

)
.

Substituting for N0, r and K in the solution for the logistic DE gives

the following function for the number of fish at time t months:

N(t) =
1000× 30

30 + (1000− 30)e−0.1t

=
30000

30 + 970e−0.1t

continued...
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Fish and the logistic model (continued)

Example 15.3.5 (continued) The population over 80 months is

shown in the following graph.
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• The initial population is much less than the carrying capacity, so

as expected the population initially rises close to exponentially,

then the growth rate reduces and the population gradually ap-

proaches the carrying capacity.

• The graph shows the sigmoidal “S”-shaped logistic curve.

For comparison, the following graph shows the fish population over

time if the initial population is N0 = 1500.
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SCIE1000, Section 15.3. Case Study 30: Fish and the logistic model Page 368



Fish and the logistic model (continued)

Question 15.3.6 Recall that N ′ = 0.1 N

(
1000−N

1000

)
.

(a) Find all stable population sizes.

(b) Interpret your answer to Part (a).

(c) The government allows limited fishing, with 9 fish caught per

month. Write a new DE for N(t), and explain your answer.

(d) Find all new stable population sizes.

continued...
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Fish and the logistic model (continued)

Question 15.3.6 (continued)

(e) Interpret your answer to Part (d).

(f) A business proposes harvesting 30 fish (in total) per month.

Comment on the sustainability of this proposal.

continued...
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Fish and the logistic model (continued)

Question 15.3.6 (continued)

(g) What is the largest number of fish harvested per month which

can be maintained indefinitely?

(h) Briefly make some recommendations to assist government with

long-term stock management.

End of Case Study 30.
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15.4 Euler’s method

• Many DEs can be solved analytically; that is, using integration

and algebra, it is possible to find an exact solution to the equation.

• All of the DEs we have seen so far can be solved in this way.

• However, for more complex cases, especially with systems of DEs,

it is not possible to find exact solutions.

• Approximate solutions can be found using numerical algorithms

(this is a similar concept to the use of Newton’s method for

approximately solving equations).

• One of the simplest techniques for solving DEs approximately is

Euler’s method .

• We will describe how to use Euler’s method to solve a simple DE

(which you would not do in practice as this equation can be solved

exactly) as an illustration of how the method works.#

"

 

!

Euler’s method (informal description)

To approximate an unknown function y:

1. Choose a small step size h, and start at the given initial point.

2. Use the DE to calculate the (estimated) slope of the function at

the current point.

3. Approximate the unknown function as a short straight line,

starting from the current point, with:

– width equal to the step size h;

– slope equal to the estimated slope of the function calculated

using the expression for the derivative; and hence

– height equal to width multiplied by slope.

– Advance the current point to the end point of the straight

line.

4. If finished then stop, otherwise return to Step 2.
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Euler’s method (semi-formal description)

Given a DE y′ = . . . and an initial value (x0, y0):

1. Choose a small step size h, and start at (x, y) = (x0, y0).

2. Substitute the current values of x and y into the DE to estimate

an approximate value for y′.

3. Set y = y + h× y′ and x = x+ h.

The new point (x, y) is the next approximate function value.

4. Stop when x has advanced sufficiently far. Otherwise, return to

Step 2.

Question 15.4.1 Draw a diagram illustrating Euler’s method.
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Example 15.4.2 Use Euler’s method to find an approximate so-

lution to the DE y′ = 0.1y, with initial condition y0 = 100 when

x0 = 0. Estimate y when x = 5, using a stepsize of h = 1.

(Note that this is an exponential DE, which we can solve exactly.

In practice we would not need to use Euler’s method to solve it;

this is just a demonstration.)

Answer: With a stepsize of h = 1, to find the approximate value

of y when x = 5 we proceed as follows. (Remember that at each

step, the new value of x equals the previous value of x plus h.)

Step x y y′ = 0.1y h× y′ new x new y

0 0 100 10 10 1 110

1 1 110 11 11 2 121

2 2 121 12.1 12.1 3 133.1

3 3 133.1 13.31 13.31 4 146.41

4 4 146.41 14.641 14.641 5 161.051

So when x = 5, y ≈ 161.051.

A graph of the approximate solution is shown below. The five y

values from the last column of the above table are marked as circles,

with straight lines approximating the function between these points.
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There are some important things to know about Euler’s method.

• It gives an approximate solution, not an exact solution. There

will be numerical inaccuracies in the answer.

• The choice of stepsize is very important: smaller values will give a

more accurate answer, but take longer to calculate.

• The method can result in large numerical inaccuracies if it is used

over a very large range of x values.

• Despite these limitations, the method can give very good approxi-

mate solutions to quite difficult problems.

Example 15.4.3 In Example 15.4.2, we used a stepsize of h = 1

to approximately solve y′ = 0.1y.

The following graph shows the approximate solution with a stepsize

of h = 2.5 (bottom curve), h = 1 (middle curve) and the exact

solution (top curve).

As h becomes smaller, the solution becomes more accurate (that is,

moves closer to the top curve).
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• In addition to modelling populations in ecology, the logistic

equation has also proved to be a valuable model of cell growth in

cancerous tumours.

Case Study 31:

Medicine, Maths and Multiple
Myeloma

Australian Blood Cancer Incidence: Year 2000; see www.lymphoma.org.au/content/?id=25

• Cancer is a leading cause of death in humans.

• The health website www.healthinsite.gov.au/topics/Cancer states

“Cancer is a diverse range of diseases where abnormal cells grow

rapidly and generally spread uncontrolled throughout the body.

These cancerous cells can invade and destroy surrounding tissue

and spread (metastasise) to distant parts of the body.”

• Multiple myeloma is a cancer of the plasma cells, which are an

integral part of the immune system.

• It is one of the more common blood cancers, affecting around 4

people per 100,000.

• Average age at diagnosis is around 60. No cause or clear risk

factors have been identified.

• Multiple myeloma is incurable, but treatment via steroids or

chemotherapy has extended life expectancy (which is currently

around 60 months if diagnosis is early).
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Medicine, Maths and Multiple Myeloma (continued)

• A large amount of ongoing research is undertaken in order to

understand different forms of cancer, including the search for

better methods of management, treatment and cure.

• An important component of this is developing better models of

tumour growth and treatment.

• For example, a papera discusses various models of tumour growth,

including modelling multiple myeloma tumour growth using the

logistic equation.

• Tumours cannot grow indefinitely: their maximum size is deter-

mined by the physiology of the sufferer and by the need for tumour

cells to receive nutrients (such as oxygen).

• The maximum tumour size corresponds to the carrying capacity

K in the logistic DE.

• Chemotherapy is a medical treatment involving the infusion of

highly toxic chemicals into the body, killing rapidly dividing cells.

(Rapid division is a common characteristic of cancerous cells.)

• High-dosage chemotherapy and stem-cell grafts are the primary

treatments for multiple myeloma.

• Determining the precise chemotherapy dosage involves a trade-off

between the beneficial impact of reducing tumour size and the

(often severe or life-threatening) side-effects resulting from the

highly toxic drugs.
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Medicine, Maths and Multiple Myeloma (continued)

Question 15.4.4 A newly diagnosed, early-stage tumour will typ-

ically have: a size of around 109 cells; a doubling time of about 61

days so the growth rate is r ≈ 0.0114 per day; and a maximum size

of about 4× 1012 cells.

(a) Write a DE for the rate of change of the size C(t) of this tumour.

(b) Assume that the rate at which chemotherapy kills cancerous cells

is proportional to the tumour size. Write a new DE for the rate

of change of the size C(t) of a tumour undergoing treatment.

• One treatment regime for multiple myeloma involves administering

chemotherapy for each of days 1 to 4, on 4 to 6 week cycles, for a

period of more than a year.

• We can develop a computer model to investigate the potential

impact of this treatment on tumour size.

Program specifications: Write a Python program which uses Euler’s

method to plot the predicted tumour size over a chosen number of

days. The program must model chemotherapy treatment as described,

with the user able to choose the proportion of cells killed on each

treatment day. Use a step size of one day and cycles of five weeks.
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Medicine, Maths and Multiple Myeloma (continued)

Python Example 15.4.5

1 # A program to model the effect of chemotherapy on

2 # a multiple myeloma tumour.

3

4 from __future__ import division

5 from pylab import *

6

7 kill =input("What proportion of cells does chemo kill each day:")

8 duration = input("For how long should the model run in days? ")

9

10 # Initialise variables

11 days = arange(0, duration)

12 sizes = 1.0 * arange(0,duration)

13 r = 0.01114

14 stepSize = 1

15 cells = pow(10,9)

16 maxSize = 4 * pow(10,12)

17

18 # Complete each step of Euler’s method.

19 for i in days:

20 sizes [i] = cells

21 Cdash = r * cells * (1 - cells/maxSize)

22

23 # Apply the effect of chemotherapy if it is a treatment day;

24 # cycles occur every 5 weeks; treatment is on days 1 to 4.

25 if i % 35 < 4:

26 Cdash = Cdash - kill * cells

27 cells = cells + Cdash * stepSize

28

29 plot(days, sizes, ’k-’, linewidth = 2)

30 grid(True)

31 xlabel("time (days)")

32 ylabel("tumour size (cells)")

33 title("Size of multiple myeloma tumour")

34 show()

SCIE1000, Section 15.4. Case Study 31: Medicine, Maths and Multiple Myeloma Page 379



Medicine, Maths and Multiple Myeloma (continued)

The graphs show modelled tumour sizes with: no treatment (top; note

that median overall survival time after diagnosis is around 3 years);

and 5% of cells killed per day during treatment (bottom).
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Medicine, Maths and Multiple Myeloma (continued)

The following graph shows the modelled tumour size with 10% of cells

killed per day during treatment. Note the difference in trend in the

tumour sizes in this graph and in the previous two graphs.

Question 15.4.6 The previous model of cancer treatment is

VERY rough. What are likely to be some of the largest errors?

End of Case Study 31.
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15.5 Space for additional notes
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16 Systems of DEs

On the farm, every Friday
On the farm, it’s rabbit pie day.
So, every Friday that ever comes along,
I get up early and sing this little song
Run rabbit - run rabbit - Run! Run! Run!
Don’t give the farmer his fun! Fun! Fun!
He’ll get by
Without his rabbit pie
So run rabbit - run rabbit - Run! Run! Run!

Artist: Flanagan and Allen
(www.youtube.com/watch?v=SVdoZNxtL8k)

(www.youtube.com/watch?v=lEqtcmn-ePU)

The wild hunt: Åsg̊ardsreien (1872), Peter Nicolai Arbo (1831 – 1892), Nasjonal-
galleriet, Oslo. (Image source: en.wikipedia.org)
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Introduction

In the previous section we introduced DEs, and showed how they are
important tools for modelling a range of phenomena, including populations.

Rather than being isolated entities, many natural phenomena involve
interactions between multiple factors. For example, in predator/prey
relationships, movements in the populations of both predators and prey are
interlinked.

In this section we extend the use of DEs, showing how a system of DEs can
be used to model more complex phenomena.

Some of the examples/contexts we will discuss are:

• Organisms with distinct life stages.

• Behaviourism.

• Interacting species.

• Predator/prey relationships.

Specific techniques and concepts we will cover include:

• Life-cycle diagrams.

• Systems of DEs.

• Using Euler’s method to solve systems of DEs.

• Lotka-Volterra equations.
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16.1 Introduction to systems of differential

equations

• The DEs studied so far have all involved modelling a single,

distinct phenomenon.

• Often there are multiple factors which interact, requiring more

sophisticated models.

• For example:

– in a predator-prey relationship, the changes in the population

sizes of two species are interrelated;

– in a species with multiple distinct life stages, changes in the

population sizes of each stage depend on the populations in

other stages; and

– the rate at which an epidemic spreads through a population

is influenced by the number of infected individuals and the

number of susceptible individuals.

• These more complex situations are typically modelled using a

system of DEs; that is, more than one DE.

• Just as with single DEs, sometimes a system of DEs can be solved

analytically, and other times the system needs to be solved using

approximate techniques.

• Euler’s method can be applied to a system of equations in a very

similar way to solving a single equation: simply apply one step of

Euler’s method to each equation in turn, then apply subsequent

steps to all equations in turn.
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16.2 Going through a difficult stage

• Earlier we modelled populations using exponential and logistic

DEs.

• In all cases, the populations were assumed to be homogeneous;

that is, every individual in the population is identical in terms of

its impact on population growth.

• Many organisms have substantial differences in typical survival

rates and reproduction rates between different life stages.

• For example, in many species, small juveniles have a low survival

rate and do not reproduce, whereas mature breeders have a high

survival rate and do reproduce.

• Hence, for more advanced organisms, particularly those with a long

life-span, a simple model based on a single DE will be inaccurate.

• In such cases, systems of DEs give rise to better models.

• In one model, populations are divided into groups based on their

life stages, such as juvenile or breeding adult.

• Rather than applying a constant growth rate to every individual

in the population, a system of DEs:

– considers the distribution of the population within the distinct

groups;

– allows different rates of reproduction and death within different

groups; and

– includes the transitions of individuals between groups.

• To assist with writing the equations in a system of DEs, it is

sometimes useful to draw a diagram showing the rates of transition

between stages.

• When modelling a population, this is called a life-cycle diagram.
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Life-cycle diagram

A life-cycle diagram for an organism describes the transitions be-

tween the stages that define its life cycle.

Each stage in the life cycle of the organism is represented as a circle,

with a directed arrow joining Stage A to Stage B whenever it is

possible for there to be a transition from Stage A to Stage B.

Each arrow from A to B has a number associated with it, which is

the rate of transition from Stage A to Stage B.

• The general form of a stage in a life-cycle diagram is shown below.

Not all stages will have all of these arrows, as some particular

transitions may not occur.

Some stage

from other stages to other stages

• To draw the life-cycle diagram for an organism, you need to know:

– the number of stages;

– all possible transitions from/to each stage, including:

∗ reproduction;

∗ transitions due to the passage of time;

∗ transitions due to other factors; and

∗ deaths.

– the number associated with each transition.

• From a life-cycle diagram, it is easy to write a system of DEs for

the number of individuals in each stage.
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Question 16.2.1 An idealised fish species has two distinct life

stages: juvenile and adult. Each month, on average:

• Juveniles do not breed, nd have a 0.5 probability of surviving to

adulthood, and a 0.5 probability of dying.

• Adults have a fertility of 5, and will all die.

(a) Draw a life-cycle diagram for this fish, with two stages.

(b) If the populations of juveniles and adults at any time are J(t)

and A(t), write a system of DEs for these populations.

(c) At time 0 a population comprises 20 juveniles and 2 adults. Use

Euler’s method and a step size of one month to estimate the

number of fish in each stage at time t = 2 months.

continued...

SCIE1000, Section 16.2. Page 388



Question 16.2.1 (continued) Sometimes it is convenient to include

death as a stage in a life-cycle diagram.

(d) Draw a life-cycle diagram for this fish, with three stages, includ-

ing death.

(e) Let D(t) be the total number of dead fish at any time. Write a

system of DEs for J(t), A(t) and D(t).

(c) At time 0 a population comprises 20 juveniles, 2 adults and no

dead fish. Use Euler’s method and a step size of one month to

estimate the number of fish in each stage at time t = 2 months.

• This approach can be used to model other phenomena.
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Case Study 32:

Behaviourism, rats and mazes.

• In psychology, behaviourism is a theory of learning based on the

proposition that everything that an organism does is a behaviour

acquired through conditioning, which is the interaction of the

organism with its environment.

• According to this theory, behaviour can be studied in a scientific,

systematic manner.

• Three of the most famous researchers in behaviourism are Pavlov,

Skinner and Watson.
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Behaviourism, rats and mazes. (continued)

• Over the last century, psychologists have conducted many be-

havioural experiments on rats (also on pigeons and students!).

• Some such experiments involved observing movement patterns of

rats in mazes, and measuring any impact on these patterns arising

from applying different stimuli to the rats.

Question 16.2.2 Consider an experiment analysing the movement

of a rat through a three-stage maze. During each time step the rat

will either:

• remain within the same stage in the maze; or

• move forwards to the next stage (if any); or

• move backwards to the previous stage (if any).

A stylised representation of the maze is shown, with the probabilities

that a rat in a stage will move to an adjacent stage in each time step.

CBA

0.020.1

0.20.3

(a) Let A(t), B(t) and C(t) be the probabilities that a rat will be in

each corresponding stage of the maze at time t. Write a system

of DEs for J(t), A(t) and D(t).

continued...
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Behaviourism, rats and mazes. (continued)

Question 16.2.2 (continued)

(b) If a rat is placed in Stage A at time 0, use Euler’s method and

a step size of 1 to estimate the probability that the rat will be

in each stage at time t = 2.

• If the experiment runs for many time steps, it is convenient to use

a Python program to implement Euler’s method.

Program specifications: Develop a Python program which uses

Euler’s method with a stepsize of one to estimate the probabilities that

the rat will be in each stage, from t = 0 to t = 30. Draw a graph of

these probabilities.

Python Example 16.2.3

1 # Uses Euler’s method to model rat movements in a maze.

2 from __future__ import division

3 from pylab import *

4

5 # Initialise variables: apply Euler’s method for 30 steps.

6 maxt = 30

7 # The rat is initially in Stage A.

8 A = 1
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Behaviourism, rats and mazes. (continued)

Python Example 16.2.4

9 B = 0

10 C = 0

11 AProb = zeros(maxt+1)

12 BProb = zeros(maxt+1)

13 CProb = zeros(maxt+1)

14 AProb[0]=1

15 stepsize = 1

16

17 # Step through Euler’s method.

18 for i in arange(1, maxt+1):

19 dA = -0.3 *A + 0.1 * B

20 dB = -0.3 * B + 0.3 *A + 0.02 * C

21 dC = -0.02 * C + 0.2 * B

22 A = A + stepsize * dA

23 B = B + stepsize * dB

24 C = C + stepsize * dC

25 AProb[i] = A

26 BProb[i] = B

27 CProb[i] = C

28

29 # Output the graphs.

30 times = arange(0, maxt+1)

31 plot(times, AProb, ’b-’, linewidth=3)

32 plot(times, BProb, ’k-’, linewidth=3)

33 plot(times, CProb, ’r-’, linewidth=3)

34 xlabel(’Time (steps)’)

35 ylabel(’Probability’)

36 title(’Probabilities of being in each stage’)

37 text(20, 0.74, ’C(t)’)

38 text(10, 0.3, ’B(t)’)

39 text(7, 0.11, ’A(t)’)

40 show()
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Behaviourism, rats and mazes. (continued)

• Here is the output from running the program.

0 5 10 15 20 25 30
Time (steps)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

C(t)

B(t)

A(t)

Probabilities of being in each stage

• Psychologists might conduct a series of experiments in which they

apply some stimulus to rats in the maze and investigate how closely

the observed positions match the expected positions, and hence

investigate whether the stimulus causes a behavioural change.

• The calculations can easily be modified to reflect changes in the

experiment, including: the difficulty of traversing the maze; the

number of stages in the maze; the strengths of any positive or

negative stimuli; or the initial location of rats in the maze.

End of Case Study 32.

SCIE1000, Section 16.2. Case Study 32: Behaviourism, rats and mazes. Page 394



16.3 Interacting species

• Systems of DEs can also be used to model interactions between

multiple species.

Question 16.3.1 Consider a controlled laboratory experiment sim-

ulating the effects of immigration, emigration, births and deaths on

populations of Assassin bugs (predators) and caterpillars (prey). Ini-

tially there are 40 Assassin bugs and 400 caterpillars. Each day:

• 15 caterpillars are introduced into the experiment (modelling

immigration and birth of caterpillars);

• one quarter of the Assassin bugs each eat a caterpillar (death of

caterpillars);

• 12 Assassin bugs are removed (modelling emigration and death

of Assassin bugs); and

• for each 25 caterpillars eaten, one new Assassin bug is introduced

(modelling birth of Assassin bugs).

Let A(t) and C(t) be the populations of Assassin bugs and caterpil-

lars at any time t in days.

(a) Write a DE for the rate of change of each of the populations.

continued...
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Question 16.3.1 (continued)

(b) Show that the following equations are solutions to the DEs in

Part (a).

A = 40 sin 0.1t+ 60

C = 100 cos 0.1t+ 300.

(c) Draw a rough sketch of the populations over time, and briefly

interpret the graph.

continued...
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Question 16.3.1 (continued)

(d) Ecologists might use the phrase stable populations. What does

this mean, and why is it important?

(e) How are stable populations represented mathematically? Why?

(f) Find all pairs of population sizes of Assassin beetles and caterpil-

lars which represent stable populations. Interpret your answer.

• This model of interactions is very simple, but it is not unreasonable.

• It is well-known that many pairs of phenomena show linked,

periodic behaviour over time, including:

– populations of predator/prey species in isolated ecological

systems;

– economic conditions and employment opportunities in “cyclic”

industries such as geology; and

– levels of affection in relationships.
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16.4 Lotka-Volterra model

• Question 16.3.1 modelled interactions between two species in a

controlled environment.

• In general, inter-species interactions are not controlled.

• A classical problem in ecology is that of predator/prey relationships.

Given two species, with one a predator of the other, various models

can be used to predict population changes over time.

Case Study 33:

Seals and polar bears

• Consider a simple ecosystem in which a population of seals is

preyed upon by a population of polar bears.
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Seals and polar bears (continued)

Standard assumptions for this type of model are that:

• the prey species has no other predators, and the predator species

has no other prey; and

• the prey species breeds rapidly and individuals do not compete

with each other, but the predator species breeds more slowly and

individuals compete with each other.

Question 16.4.1 Let P (t) and S(t) be the populations of polar

bears and seals (respectively) at time t in years. What factors would

influence the rate of change of each of S and P? In each case,

identify whether the factor leads to an increase or decrease in the

corresponding population.

(a) Factors influencing the rate of change of the seal population:

(b) Factors influencing the rate of change of the polar bear popula-

tion:
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Seals and polar bears (continued)

• The best-known predator/prey model is the Lotka-Volterra

model.�

�

�

�

Lotka-Volterra model

Let P (t) and S(t) be the sizes of populations of a predator and

prey species respectively, at any time t. The Lotka-Volterra model

represents the population movements in the following system of DEs:

S ′ = aS − bSP
P ′ = −cP + dSP

where a, b, c and d are positive constants whose values depend on

the particular species being modelled.

Question 16.4.2 Explain carefully what each of the terms in

each of the equations in the Lotka-Volterra model represents. In

particular, explain the physical relevance of the term SP .

• Unlike the system of equations in Question 16.3.1, it is not possible

to find a general solution to the Lotka-Volterra equations. Instead,

approximate solutions can be found using Euler’s method.
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Seals and polar bears (continued)

Question 16.4.3 Let P (t) and S(t) be the populations of polar
bears (predators) and seals (prey) respectively. Recall that

S′ = aS − bSP P ′ = −cP + dSP

(a) How would the statement “Polar bears become extinct” be writ-

ten mathematically?

(b) If all polar bears died suddenly from disease, what does the

model predict will happen to the population of seals? Explain

your answer carefully.

(c) Is your answer to Part (b) biologically realistic? What would

probably happen in reality?

continued...
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Seals and polar bears (continued)

Question 16.4.3 (continued)

(d) If a = 0.05 year−1, b = 0.001 year−1, c = 0.05 year−1 and

d = 0.0001 year−1, find all pairs of stable population sizes.

(e) Interpret your answer to Part (d).

(f) Program specifications: Develop a Python program which

uses Euler’s method with a stepsize of one year to solve the

Lotka-Volterra equations.
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Seals and polar bears (continued)

Python Example 16.4.4

1 # Euler’s method to model populations of seals and polar bears.

2 from __future__ import division

3 from pylab import *

4

5 # Initialise variables.

6 maxt = 300

7 S = 600

8 P = 80

9 a = 0.05

10 b = 0.001

11 c = 0.05

12 d = 0.0001

13 SA = arange(0,maxt+1)

14 PA = arange(0,maxt+1)

15 SA[0] = S

16 PA[0] = P

17

18 # Step through Euler’s method with stepsize 1

19 for i in arange(0, maxt+1):

20 dS = a*S - b*S*P

21 dP = -c*P + d*S*P

22 S = S + dS

23 P = P + dP

24 SA[i] = S

25 PA[i] = P

26 # Output graphs.

27 times = arange(0, maxt+1)

28 plot(times, SA, ’b-’, linewidth=3)

29 plot(times, PA, ’k-’, linewidth=3)

30 xlabel(’time (years)’)

31 ylabel(’number of individuals’)

32 title(’Predicted populations of seals and polar bears’)

33 text(70, 700, ’S(t)’)

34 text(5, 100, ’P(t)’)

35 show()
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Seals and polar bears (continued)

Example 16.4.5 Assume at time t = 0 years there are 600 seals

and 80 polar bears. Running the above program predicts the fol-

lowing movements in population sizes over 300 years.
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time (years)
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P(t)

Predicted populations of seals and polar bears

Question 16.4.6

(a) Comment on the comparative population changes over time.

continued...
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Seals and polar bears (continued)

Question 16.4.6 (continued)

(b) Critically evaluate the following possible media statement:

A survey has shown that the populations of both species

are in decline. Hence we need to act promptly, otherwise

one or both species will become extinct.

End of Case Study 33.
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16.5 Space for additional notes

SCIE1000, Section 16.5. Page 406



17 Fully sick
From New Delhi to Darjeeling
I have done my share of healing,
and I’ve never yet been beaten or outboxed.
I remember that with one jab
of my needle in the Punjab
how I cleared up beriberi
and the dreaded dysentery,
but your complaint has got me really foxed.

Oh doctor, touch my fingers.
Well, goodness gracious me.

You may be very clever
but however, can’t you see,
my heart beats much too much
at a certain tender touch,
it goes boom boody-boom boody-boom boody-boom
boody-boom boody-boom boody-boom-boom-boom.

Artist: Peter Sellers and Sophia Loren
(www.youtube.com/watch?v=gKMy15O1tCw)

The Triumph of Death (1562), Pieter Bruegel the Elder (c. 1525 – 1569), Museo
del Prado, Madrid.
(Image source: commons.wikimedia.org/wiki/Image:Thetriumphofdeath.jpg)
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Introduction

Throughout history, infectious diseases have claimed many human lives. The
effects of diseases on humans and other species remain a major challenge for
the international community, so it is important to understand what causes
diseases, how they spread, how their impact can be minimised and what
mechanisms are effective for prevention and cure.

Various aspects and impacts of disease are managed by a diverse group of
individuals and organisations. Health practitioners spend much of their
professional lives treating people with disease, parents attempt to prevent
their children from catching diseases, governments organise mass vaccination
campaigns, countries expend a large proportion of their national income on
health, the World Health Organisation is preparing contingency plans for
pandemics, and researchers are always working on finding new cures.

An important approach to developing effective responses to possible
pandemics is understanding how a disease might spread throughout a
population. Differential equations are one of the most commonly used
modelling tools to enable such predictions to be made. In this section we
will study several DE-based models of disease spread.

Some of the examples/contexts we will discuss are:

• Epidemics.

• Rubella.

• Catastrophes, Spanish flu and avian influenza.

Specific techniques and concepts we will cover include:

• The SIR model.

• The SIRD model.
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17.1 Epidemiology and epidemic models

Epidemiology?

Like ecologists, epidemiologists seek to understand:
– species richness (biodiversity)

– species abundance (populations/communities)

– species distribution (temporal, spatial)

Study human pathogens = epidemiology
Study animal pathogens = epizootiology

Epidemiology/Epizootiology

exhibit longitudinal fluctuations (esp. seasonal)

influenced by many factors:
– demographic, socioeconomic, behavioural
– geographic, climatic

• Prevalence  (number infected)
• Incidence     (change in prevalence over time)
• Distribution  (density, intensity, concentration,..)

Study of occurrence, spread and control of diseases
(descriptive)    (analytical)       (experimental)

Epidemiological studies

Four main types:                         

• Case series (descriptive)                              
– index, incidental, miscellaneous

• Case control studies (retrospective)
– cases + controls interviewed

• Cohort studies (prospective)             
– cohort followed forward in time

• Outbreak studies (predictive)  
– rate of change in population

Maths

not quantitative

statistics
Odds Ratio

statistics
Relative Risk

calculus
Differential Equations
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• In this section we will discuss some methods for using DEs to model

the large-scale spread of infectious disease through a population

over time.�

�

�



Epidemic

A large-scale occurrence of disease in a human population is called

an epidemic if new cases of the disease arise at a rate that “sub-

stantially exceeds what is expected” in a given time period.

Localised occurrences are called outbreaks, and global occurrences

are often called pandemics.

• Modelling epidemics and pandemics is an important aid to

understanding how they spread and how they can be controlled

through various techniques such as quarantine and immunisation.

• Many epidemic models are based on systems of DEs (as was the

case for the predator/prey relationship).

• We will commence our study of epidemics with a simple model,

known as the SIR (Susceptible, Infected, Removed) model.

• We will study the SIR model in the context of the disease rubella,

but this type of model can be applied to many different diseases

(such as measles, cholera, swine flu and bubonic plague).

• Researchers use a variety of models when studying epidemics,

including numerous variations of the basic SIR model.

• Later we will study Avian influenza using the SIRD model, which

includes an additional category: Dead.

SCIE1000, Section 17.1. Page 410



Case Study 34:

Rubella

• Rubella (or German measles) was (and in some countries, is) a

common disease, particularly in childhood.

• The primary mechanism for transmission is via airborne droplets.
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Rubella (continued)

• In most cases rubella has very mild symptoms, which may even

pass unnoticed.

• However, if a woman is infected during the first 20 weeks of

pregnancy then spontaneous abortion can occur (in about 20% of

cases), or the child may be born with congenital rubella syndrome

(CRS), which is a range of incurable conditions including deafness,

blindness and mental retardation.

• There was a rubella epidemic in the USA between 1962 and 1965.

It is estimated that there were well over 10 million infections,

around 30,000 still births and 20,000 children were born with CRS.

• A rubella vaccine was introduced in 1969 and is routinely ad-

ministered in many countries, including Australia. For example,

the Queensland Department of Health recommends all children

have a combined MMR (measles, mumps and rubella) vaccine at

ages 12 months and 4 years. (Previously a rubella vaccine was

administered to early-teenage girls.)

• Vaccination campaigns have greatly reduced the incidence of

rubella and the frequency of outbreaks. In 2004, it was announced

that rubella has been eliminated from the USA.

• (In January 2008, at least four babies in Sydney became infected

with rubella. All were less than 12 months old, so were under the

age for administering the MMR vaccine.)

• Some individuals and groups are opposed to vaccination campaigns

in general (not just the MMR vaccine), claiming that associated

risks outweigh likely benefits.

• However, consider the following news item from the BBC.
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Rubella (continued)

Extension 17.1.1 (From news.bbc.co.uk, August 8th 2008.)

“Measles fears prompt MMR campaign

The government has launched a campaign to raise MMR vacci-

nation rates in England amid growing concerns about a measles

epidemic. The Department of Health has asked primary care

trusts to offer the jab to all children up to the age of 18 not

already fully protected. . .

An epidemic of measles - which can be fatal - could potentially

affect up to 100,000 young people in England alone.

Experts say MMR is perfectly safe, but vaccination rates dipped

following controversy about its safety.

A study which raised the possibility that MMR was linked to

autism has since been dismissed by the vast majority of research,

but levels of public confidence in the jab have still not fully

recovered. . .

The number of cases of measles in England is rising following a

decade of relatively low vaccine uptake. . . In 2006 and 2007 there

were 1,726 confirmed cases in England and Wales - more than

the previous 10 years put together. From 1996 to 2005 there was

a total of 1,621 confirmed cases.

It is estimated that around three million children aged 18 months

to 18 years have missed either their first or second MMR vacci-

nation.

Scientific advice from both the Department of Health and the

Health Protection Agency suggests vaccination levels need to be

increased as a matter of urgency. . . Around 95% of the popula-

tion need to be vaccinated to protect against widespread out-

breaks of measles. The current vaccination rate across England

and Wales is around 10 percentage points lower. . . ‘If we continue

to accumulate unvaccinated children, measles will spread among

them - at some point there will be a measles epidemic.’ ”
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Rubella (continued)

• We will now introduce the SIR epidemic model and apply it to

possible outbreaks of rubella.�

�

�

�

SIR model of epidemics

The SIR model of epidemics divides a population into three distinct

compartments or groups. At any time t:

(1) The susceptible compartment S(t) is the group of people who

are susceptible to the disease.

(2) The infective compartment I(t) is the group of people who have

the disease and can infect susceptible people.

(3) The removed compartment R(t) is the group of people who

cannot catch the disease, either because they have permanently

recovered, are naturally immune, or have already died from the

disease.

The SIR model models the changes in the number of people in each

compartment over time.

• The only possible movements between compartments are:

– A susceptible person can become infected; and

– An infected person can become removed.

infection

rate

removal

rate

Susceptible Infected Removed

• The model also assumes that:

– there are no births, or deaths from other causes, so the

population size is constant (apart from disease-related deaths);

and

– the population mixes homogeneously, so susceptible, infected

and removed individuals mix equally.
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Rubella (continued)

• For any given disease there can be significant variation between

how long different individuals take to recover, and how many other

people they will infect. However, it is usually possible to estimate

representative or “average” values for each of these quantities.�

�

�

�

Basic reproduction number

The basic reproduction number of a disease, written R0, is the

average number of secondary infections caused by a single infected

individual in a completely susceptible population, in the absence of

any preventive interventions.

The value of R0 is determined by such factors as how infectious

the disease is, how homogeneously the population mixes and the

duration of the infectious period.

Example 17.1.2 For rubella, the infectious period is typically 2

weeks and on average an infected individual will infect five other

people in a completely susceptible population, so R0 ≈ 5.

• When developing the equations for the SIR model, it is useful to

define two additional concepts:

– the infection rate is defined to equal the basic reproduction

number divided by the infectious period; and

– the recovery rate is defined to equal 1 divided by the infectious

period.

Example 17.1.3 For rubella, the infection rate is 2.5 people per

week and the recovery rate is 0.5 per week.

These concepts make sense. For rubella, on average an infected per-

son will infect 5 additional people in 2 weeks. Hence this individual

infects 2.5 people per week on average while they are sick, and each

week they “half recover”.
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Rubella (continued)�

�

�

�

The equations for the SIR model

If a population of N people at time t is divided into three compart-

ments, susceptible S(t), infected I(t) and removed R(t), then the

SIR model states:

S ′ = − a

N
SI

I ′ =
a

N
SI − bI

R′ = b I

where a is the infection rate and b is the recovery rate.

Question 17.1.4 Explain carefully, in words, what each of the

terms in each of the SIR equations represents.
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Rubella (continued)

Question 17.1.5 Assume that everyone in a population of 10000

people is susceptible to rubella. Ten people become infected on a

group vacation and return while infective. Recall that the infectious

period for rubella is 2 weeks and R0 ≈ 5.

(a) Draw a rough sketch of your prediction of the shapes of the

graphs of S(t), I(t) and R(t) over a period of 30 weeks.

(b) What do you think is the peak number of infected people at any

time, and when will this occur?

(c) How many people do you think will be in each compartment S,

I and R after 30 weeks?
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Rubella (continued)

• Note that the SIR equations keep the same total population size

at all times (because the rate of movement between compartments

all balance).

• An epidemic occurs if introducing a group of infected people to a

population causes the number of infectives to increase.

• The SIR model predicts that an epidemic will occur if at t = 0,

I ′ > 0 (that is, the number of infectives is increasing).

• Simple algebra shows that I ′ > 0 at time 0 if the fraction of the

total population that is susceptible is more than b/a.

• (This is identical to saying that the proportion of susceptibles

in the population is more than 1/R0, where R0 is the basic

reproduction number.)

Example 17.1.6 For rubella,

the infection rate a = 2.5 week−1; and

the recovery rate b = 0.5 week−1.

The fraction b/a = 0.5/2.5 = 0.2. (Alternately, 1/R0 = 1/5 = 0.2.)

Hence if more than 20% of an initial population is susceptible to

rubella and infected individuals enter the population then we expect

an epidemic to occur.

Question 17.1.7 Explain intuitively why an epidemic will occur

if a fraction of more than 1/R0 of a population is susceptible.
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Rubella (continued)

Question 17.1.8 What is the purpose of a vaccination campaign?

(This question may be a little less obvious than it looks.)

Example 17.1.9 Now we can write equations for modelling a

rubella epidemic. Using the values of a and b from above, and

taking the population of 10000 susceptible people with 10 infectives

from Question 17.1.5, the SIR equations are:

S ′ = − 2.5

10000
SI

I ′ =
2.5

10000
SI − 0.5I

R′ = 0.5I

where I(0) = 10, S(0) = 9990 and R(0) = 0.

Because the proportion of susceptibles is more than 0.2, in this case

we would expect an epidemic to occur.
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Rubella (continued)

• Just as with the Lotka-Volterra equations, it is not possible to

find a general solution to the SIR equations. However, we can use

Euler’s method to find an approximate solution.

Example 17.1.10 Consider the population of 10000 people, with

10 infectives. Euler’s method was used to predict the spread of

rubella through the population over 16 weeks, commencing when

the 10 infected individuals entered the population. The graph shows

the predicted numbers of susceptibles S(t), infectives I(t) and re-

moved people R(t).
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From the graph we notice that:

• An epidemic occurs, and lasts for about 14 weeks.

• The peak number of infectives at any time is 4925 individuals,

which occurs at time 4.4 weeks.

• Almost everybody becomes infected over time, although a small

number never become infected.
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Rubella (continued)

Question 17.1.11 The SIR model predicted that 56 people never

become infected.

(a) Does this accurately reflect what happens in practice?

(b) This leads to an interesting question: what causes the end of an

epidemic, a lack of infectives or a lack of susceptibles?

(c) Earlier, we said that the SIR model predicts an epidemic will

occur whenever the proportion of susceptibles in a population

is greater than b/a, where b is the recovery rate and a is the

infection rate. Suggest some strategies which might be used to

prevent an epidemic or reduce its severity or duration.

SCIE1000, Section 17.1. Case Study 34: Rubella Page 421



Rubella (continued)

• The SIR model can also be applied when some individuals have

been vaccinated against a disease, so are not susceptible.

• The model is applied by placing such people in the removed com-

partment at time 0, rather than in the susceptible compartment.

• Applying the model with different parameters allows predictions

to be made about the impact of different vaccination rates on the

potential spread of disease in an outbreak.

Example 17.1.12 Consider a population of 10000 people with 10

infectives.

If no people are vaccinated, then we saw in Example 17.1.10 that:

• the peak number of people infected at any time, Ipeak, is 4925;

• the time in weeks at which this occurs, tpeak, is 4.4 weeks after

the infectives entered the population;

• the total number of people infected by the outbreak, Itot, is 9944;

and

• the number of susceptible people who never become infected,

Sfinal, is 56.

Euler’s method was used to predict the impact of different

population-wide rubella vaccination rates. The following graphs

show the predicted values of S(t), I(t) and R(t) for vaccination

rates of 30% (first graph) and 70% (second graph).

continued...
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Rubella (continued)

Example 17.1.12 (continued)

30% vaccination rate:
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70% vaccination rate:
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Rubella (continued)

Question 17.1.13 With respect to the predictions about rubella

outbreaks with no vaccinations (Example 17.1.10), 30% vaccination

rates and 70% vaccination rates (Example 17.1.12):

(a) Describe the key differences between the predictions.

(b) What would be the practical benefits of achieving high vaccina-

tion rates?
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Rubella (continued)

Example 17.1.14 Some additional predictions about possible

rubella outbreaks are shown in the following table, again for a pop-

ulation of 10000 individuals with 10 infectives.

In each case, V is the percentage of the population vaccinated, Ipeak

is the peak number of infected people at any time, tpeak is the time

in weeks at which this occurs, Itot is the total number of people who

become infected over the 50 week period, and Sfinal is the number

of susceptible people who never become infected.

V Ipeak tpeak Itot Sfinal

(%) (people) (weeks) (people) (people)

0 4925 4.4 9944 56

10 4102 4.8 8911 89

20 3300 5.4 7860 140

30 2550 6.2 6782 218

40 1844 7.3 5663 337

50 1193 8.9 4482 518

60 629 11.7 3204 796

70 199 17.8 1766 1234

80 10 0 170 1830

Recall that the recovery rate for rubella is b = 0.5 week−1 and the

infection rate is a = 2.5 week−1. Hence b/a = 0.2, so we would

expect an epidemic to occur while more than 20% of the population

is initially susceptible.

As the table shows, epidemics of varying severity occurred until the

vaccination rate reached 80%, at which point no epidemic occurred.

End of Case Study 34.
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17.2 Catastrophes

• Many governments around the world conduct catastrophe planning,

which uses sophisticated scientific and mathematical models to

predict the potential impact(s) of disastrous events.

• Catastrophes typically include large-scale events such as nuclear

explosions in major cities, severe terrorist strikes, giant tsunamis

or earthquakes, and the widespread outbreak of serious disease.

• Much of this work is highly secret, partly for security reasons, but

also because the scenarios and some of the outcomes predicted by

the models are too frightening to release publicly.

• Recall that a pandemic is an epidemic that spreads over a very

large area, such as multiple countries or even the whole world.

There have been many severe (and famous) pandemics; the most

recent one was swine flu in 2009, which was comparatively mild.

Example 17.2.1 In the 1300s, the bubonic plague or Black Death

killed around 20 million Europeans in six years; this was about one

third of the total population. In the worst-affected urban areas,

around half the population died.

The plague returned regularly for around 400 years, with around 100

epidemics occurring in that time. The social, economic, human-

itarian and psychological costs and disruption arising from these

pandemics are incalculable and unimaginable today.
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Example 17.2.2 The Spanish Flu, which occurred in 1918−1919,
spread to become a global pandemic. Within six months, 25 million
people were dead, statistical life expectancy in the USA dropped by 10
years and it is generally accepted that more people died from the disease
than from combat in the First World War. The flu was so virulent
and deadly that it ‘burnt itself out’, disappearing completely within 18
months.

Extension 17.2.3 (From a letter written by Professor N R Grist in a
camp infected by the disease, 29 September 1918.)

“These men start with what appears to be an ordinary attack

of LaGrippe or Influenza, and when brought to the Hosp. they

very rapidly develop the most viscous type of Pneumonia that

has ever been seen. Two hours after admission they have the

Mahogany spots over the cheek bones, and a few hours later

you can begin to see the Cyanosis extending from their ears and

spreading all over the face, until it is hard to distinguish the

coloured men from the white. It is only a matter of a few hours

then until death comes, and it is simply a struggle for air until

they suffocate. It is horrible.”
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Extension 17.2.4 (From ABC news, 30 December 2008)

“Study finds genes for 1918 ‘Spanish flu’ pandemic

A US-Japanese research team has announced it had isolated three
genes that explain why the 1918 Spanish flu, believed to be the dead-
liest infectious disease in history, was so lethal.

The pandemic killed between 20 and 50 million people - more than
in all of World War I, which ended in November 1918 - and spread
around the world.

The genes allowed the virus to reproduce in lung tissue, according
to research published in the Proceedings of the National Academy of
Sciences.

“Conventional flu viruses replicate mainly in the upper respiratory
tract: the mouth, nose and throat,” said University of Wisconsin-
Madison virologist Yoshihiro Kawaoka, who co-authored the study
along with Masato Hatta, also of UW-Madison.

“The 1918 virus replicates in the upper respiratory tract, but also
in the lungs,” causing primary pneumonia among its victims,” Mr
Kawaoka said.

“We wanted to know why the 1918 flu caused severe pneumonia,” he
added.

Autopsies of Spanish flu victims often revealed fluid-filled lungs
severely damaged by massive haemorrhaging.

Virologists linked the virus’ ability to invade the lungs with its high
level of virulence, but the genes that conferred that ability were un-
known, the researchers wrote.

The discovery of the three genes and how they help the virus infect
the lungs is important because it could provide a way to quickly
identify the potential virulence factors in new pandemic strains of
influenza, Mr Kawaoka said.

The genes could also lead to a new class of antiviral drugs, which is
urgently needed as vaccines are unlikely to be produced fast enough
at the outset of a pandemic to blunt its spread, he added.”
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• The threat of pandemics has not disappeared; for example, the

recent swine-flu outbreak was declared a global pandemic by the

World Health Organisation.

Extension 17.2.5 (From ABC Radio program PM, 2/9/2008)

“Worried scientists set up Australian biosecurity centre

In the last few years we’ve had scares about SARS and bird flu,
and the United States went through months of fear, in the wake
of September 11th, that terrorists were spreading anthrax spores.
Hendra virus has killed people and horses in Queensland, and horse
flu did massive economic damage last year. It all comes under the
umbrella of biosecurity.

Now a group of scientists is so concerned about Australia’s potential
vulnerability that they’ve joined forces to establish a National Centre
for Biosecurity. They say advances in viral technology are way ahead
of regulators. That means real threats which leave countries like
Australia vulnerable to attacks and outbreaks. . .

Remember SARS? There was an outbreak five years ago, several hun-
dred people died, there was a wave of dire warnings about the possi-
bility of a global disease outbreak. But then it just faded away and
all those concerns seemed to dissipate. . . Sydney University professor
of population and security, Peter Curson, was involved in the effort
at the time and says it showed just how poorly prepared Australia
is. . .

Professor Ian Ramshaw, from the Australian National University,
says there’ll be a broad range of specialists.

“So we have epidemiologists looking at spread, we’ve got mathemat-
ical modellers and so you know what happens when there’s a pan-
demic. Research scientists, ethicist, we have a whole host of different
disciplines with the centre, and that’s what’s required for biosecurity.
No one discipline owns biosecurity. We need this variation, this think
tank, this ability to research all these different areas to understand. . .

We’ll know what happens if you model what happens with the pan-
demic influenza. We know whether to close schools or open them
or isolate ourselves. We know in terms of bio-terrorism, what the
bio-terrorists may want to use. . . ’ ”
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Case Study 35:

Avian influenza

• So far there have been no verified cases of human-to-human

transmissible avian influenza. However, a focus of international

catastrophe planning relates to the possibility of a pandemic

occurring.

Extension 17.2.6 (From World Health Organisation publications.)
“WHO is coordinating the global response to human cases of H5N1
avian influenza and monitoring the corresponding threat of an in-
fluenza pandemic. . .

Since the last pandemic in 1968/69, the risk of an influenza pandemic
has never been considered greater than at the present time. As of
the date of this document, H5N1 is endemic in birds in many parts
of the world. The widespread persistence of H5N1 in bird popula-
tions poses two main risks to human health. The first is the risk of
infection when the virus spreads directly from birds to humans. The
second risk, which is of even greater concern, is that there will be in-
creased possibilities for the widely circulating virus to infect humans
and possibly reassort into a strain that is both highly infectious for
humans and spreads easily from human to human. Such a change
could mark the start of a pandemic.”
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Avian influenza (continued)

• Assume that the Australian government wants to prepare for a

possible human-transmissible avian influenza pandemic.

• They require a model that predicts how the disease would spread

over time in a city of one million people (such as Brisbane),

including how many people will be infected over time, and how

many people are likely to die.

• For catastrophe planning we will build a model which divides the

population into four distinct compartments:

(1) Susceptible, S(t) (2) Infected, I(t)

(3) Recovered, R(t) (4) Dead, D(t)

• The only possible movements between compartments are:

– a susceptible person can become infected; and

– an infected person can either recover or die.

rate

infection

InfectedSusceptible

rate

recovery

rate

mortality

Recovered

Dead

• When building a hypothetical model such as this, it is important

to choose realistic values for the model parameters.

• For this example, we will use the following values; these are the

estimated values for the Spanish Flu pandemic in 1918−1919:

a = the infection rate
= 1.9 week−1;

b = the recovery rate
= 1.4 week−1; and

c = the flu-induced mortality rate
= 0.065 week−1.
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Avian influenza (continued)

Example 17.2.7 Then the equations of the catastrophe model are:

S ′ = −a S

(N −D)
I (1)

I ′ = a
S

(N −D)
I − (c+ b) I (2)

R′ = b I (3)

D′ = c I (4)

where N is the total initial population size, so N = S+ I+R+D.

Question 17.2.8 Explain the differences between the equations in

Example 17.2.7 and the equations in the (standard) SIR model.

(1)

(2)

(3)

(4)

• Having formulated a model, we can use Euler’s method to

computationally simulate various scenarios in a city such as

Brisbane with N = 106.
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Avian influenza (continued)

Example 17.2.9 One infected person arrives in a city in which

N = 106 and everyone is susceptible.

Results: For this scenario, the model predicts that the disease

outbreak will last for about 45 weeks, around 435,000 people will

become ill, the largest number of infected people at any time is

about 29,800, and that approximately 19,200 people will die.
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Avian influenza (continued)

• When studying rubella, we calculated that if a sufficient fraction

of the population were vaccinated then no epidemic occurs. A

similar approach can be used here.

Example 17.2.10 When we studied the SIR model we saw that the

fraction of the population that needs to be vaccinated to prevent

an epidemic is 1 − b/a. This new model includes the additional

compartment “Dead”, so the fraction of the population that should

be vaccinated is

1− b+ c

a
≈ 23%.

To allow a safety margin, the aim could be to vaccinate about 30%

of the population, or 300,000 people. The model verifies that in this

case, almost nobody dies.

However, perhaps financial or time constraints mean it is not feasi-

ble to vaccinate that many people (and it is generally accepted that

this would be the case in most countries).

If 100,000 people are vaccinated, the model shows that the death

rate drops by about half, the peak number of infections at any time

drops by about two thirds, and the outbreak lasts longer.
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Avian influenza (continued)

Question 17.2.11 The capital city of Malaysia is Kuala Lumpur.

The city population is about 1.8 million, located within a regional

population of more than 7 million. Malaysia is a densely populated,

rapidly modernising, third-world country. How would your model

change if the Malaysian government asked you to apply it to a pos-

sible outbreak of avian influenza in Kuala Lumpur? Explain your

answer.
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Avian influenza (continued)

Example 17.2.12 Of course, our catastrophe model for avian in-

fluenza is purely speculative. Is it realistic?

For comparison, the following graph shows the mortality rate

(per thousand population) for the Spanish flu in several cities in

1918−1919. The impact of the Spanish flu is very clear, and the

graphs are of similar shape to those in our catastrophe model.

• Our catastrophe model predicts an overall infection rate of 45%

and a mortality rate of 4.2% of infected people.

• For the Spanish flu, infection rates reached around 50%, with

mortality rates ranging from 2% to 5%.

• Comparison of both scenarios shows that the catastrophe model

that we have presented is (at least) plausible. (Perhaps we all

should be very afraid, or least stop missing poultry!)

End of Case Study 35.
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17.3 Space for additional notes
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