APPENDIX A: Matched Exam Questions

See methods for equation used to calculate Point Biserial Correlation (PBS). Correct answer for each question indicated in bold.

Inheritance LBL: Multiple Alleles Bloom's Level 2- Comprehension		
te: Fall 2009, Section: A and B trect: 68%, 505/742 S: 0.39		
 bbit fur color is determined by one gene and r alleles that show various dominance eractions. As a result, rabbits can possess fur several colors from white to dark grey. How my different alleles could a dark gray rabbit ry for fur color? a. 1 b. 2 c. 4 d. 8 e. 16 		

Inheritance LBL: Blood Type Bloom's Level 3 Application		
Date: Fall 2008, Section: B Correct: 73%, 316/431 PBS=0 31	Date: Fall 2009, Section: A Correct: 84%, 356/423 PBS=0 39	
A woman who has blood type A has a daughter who is type O and a son who is type B. Which of the following is a possible genotype for the mother? a. $I^{A}I^{A}$ b. $I^{B}I^{B}$ c. ii d. $I^{A}I^{B}$ e. $I^{A}i$	A man who has blood type B has a daughter who is type A and a son who is type O. Which of the following is a possible genotype for the father? a. $I^{A}I^{A}$ b. $I^{B}I^{B}$ c. ii d. $I^{A}I^{B}$ e. $I^{B}i$	

Oursenelle I DI - Dibesernes		
Bloom's Level 3 Application		
Organelle I Bloom's Le Date: Fall 2008, Section: A Correct: 18%, 75/423 PBS=0.36 A free ribosome that binds to an mRNA molecule coding for a lysosomal proton pump in the lysosome membrane will: a. cleave off the signal peptide region before starting protein synthesis b. bind to the ER and synthesize the protein directly into rER membrane c. bind to the ER and synthesize the protein into the rER lumen d. synthesize the protein in the cytosol and transport it to the lysosome e. synthesize the protein in cytosol and package it in vesicles for transport to lysosome 	 LBL: Ribosomes vel 3 Application Date: Fall 2009, Section: A Correct: 40%, 168/423 PBS=0.49 A free ribosome that binds to an mRNA molecule coding for a potassium channel that is located in the membrane of an axon will: a. synthesize the protein in the cytosol and insert it directly into the axon membrane b. synthesize the protein in the cytosol, package it in a vesicle, and transport to axon c. cleave off the signal peptide region before starting protein synthesis d. bind to the ER and synthesize the protein into the rER lumen e. bind to the ER and synthesize the protein directly into the rER membrane Date: Fall 2009, Section B 	
	 PBS=0.42 A proton pump molecule that is synthesized for addition to a lysosome membrane will be made by: a. a free ribosome which will bind to rough ER and insert it into the rough ER membrane b. a free ribosome and inserted directly into a mitochondrion c. a free ribosome and released into the cytosol d. a bound ribosome on the rough ER and delivered for exocytosis by a kinesin e. a free ribosome which will then bind the rough ER and insert it into the lumen 	

Organelle LBL: Nuclear Transport Bloom's Level 3 Application

Date: Fall 2007, Section: A	Date: Fall 2009, Section: A and B
Correct: 39%, 170/436	Correct: 76%, 574/752
PBS=0.41	PBS=0.34 Section A and PBS=0.46 Section B
Activation of cytoplasmic receptor X	Vitamin A affects embryonic development by
causes an increase in mRNA encoding	regulating homeotic genes differentially in cells
aquaporin channels. What type of	based on their location within the embryo.
localization signal would you expect	Vitamin A binds to retinoic acid receptors and this
receptor X to have?	causes them to bind to DNA and regulate
a. Rough endoplasmic recticulum	transcription. What type of localization signal
docking	would you expect to see on retinoic acid
b. Golgi docking	receptors?
c. Lysosomal import	a. Mitochondrial import
d. Nuclear export	b. Channel export
e. Nuclear import	c. Nuclear import
	d. Nuclear export
	e. Rough endoplasmic reticulum binding

Cloning LBL: Restriction Enzymes Bloom's Level 2 Comprehension

Date: Fall 2008, Section: B	Date: Fall 2009, Section: A and B
Correct: 61%, 261/431	Correct: 73%, 521/709
PBS: 0.48	PBS: 0.46
 Restriction enzymes: a. recognize specific DNA sequences b. cut mRNA c. copy DNA for PCR (polymerase chain reaction) d. ligate "sticky" ends of DNA e. protect RNA from degradation 	 Restriction enzymes: a. recognize specific DNA sequences b. cut mRNA c. copy DNA for PCR (polymerase chain reaction) d. ligate "sticky" ends of DNA e. protect RNA from degradation

