Supplemental	Material 1.	Details of the diagnost	ic questions ¹ :	and their corresponding in-class	S
activities.					
DOG					

DQC Question Number & Topic 1 – Seasonal fluctuation of atmospheric CO2 2 – Cellular respiration as	Biological Processes Assessed Photosynthesis Biosynthesis Respiration in plants Cellular respiration in	Targeted active-learning activities Global Climate Change Graphs – Students work in small groups interpreting several IPCC figures, including the Keeling curve, and respond to discussion questions (1-AL and 2-AL,). Cow Graphs – Students work in small groups interpreting two bar graphs showing the amount of carbon in different components of the	
C source in decomposers	decomposers	ecosystem through time with carbon originating from a dead cow. Followed by whole class discussion (Figure 1) (1-AL, 2-AL, 3-MAL). <u>Tracing Carbon</u> – Students are given a "you are a carbon atom" scenario and asked to follow the C from the air to a variety of destinations, discussing the processes the atom experiences along the way (1-AL, 2-AL, 3-MAL).	
3 - Photosynthesis as C sink	Photosynthesis	<u>Cow Graphs</u> (see above) <u>Ecosphere Problem Tasks</u> – Students solve a set of data-rich problems that prompt students to reason both qualitatively and quantitatively about the role of producers, consumers, and decomposers in the cycling of matter and flow of energy in a small enclosed ecosystem (two hour activity, See Maskiewicz, 2006). (1-AL)	
4 – Cellular respiration and biosynthesis in decomposers	Cellular respiration in decomposers Biosynthesis	arMold Graph – Students work in small groups to interpret a graph showing the change in mass of a piece of fruit and mold and discussion questions (2-AL)thesisEcosphere Problem Tasks (see above)	
5 – Photosynthesis and biosynthesis in plants	Photosynthesis Biosynthesis	<u>Carbon from soil</u> – Students work in small groups interpreting a graph showing change in mass of potted plant (dry weight) and soil with discussion questions (2-AL). <u>Classic Plant Experiments –</u> Students work in small groups making predictions for and then reasoning about famous classic plant experiments conducted by researchers such as von Helmont, Woodward, and Priestley (Rabinowitch, 1971) (1-AL).	
6 – C released by cellular respiration in plants	Cellular respiration in plants	Ecosystem diagram – students draw arrows representing sources and sinks of carbon (2-AL). Classic Plant Experiments (see above)	
7 – C source for biosynthesis in carnivore	Digestion, biosynthesis, & respiration in animals	<u>Whale-krill-phytoplankton</u> tropic level exercise (e.g, students reason about how much carbon in a whale comes from phytoplankton) (2-AL) <u>Coal Box Diagrams</u> – students complete box and arrow diagrams determining, for example, where the carbon in coal originates (1-AL, 2-AL, 3-MAL).	

1 The questions were selected from two DQC sets, Keeling Curve (1) and Grandma Johnson (2-7), both available at <u>http://www.biodqc.org</u>. Hartley *et al.*, (2011), explain that these questions test students' understanding of generative, transformative, and oxidative biological processes across two or more scales of biological organization.