Supplemental Material

CBE—Life Sciences Education

Kalas et al.

APPENDIX

<u>Question 1</u> [select the best answer]

One of the characteristics that differentiates all haploid cells from all diploid cells is that

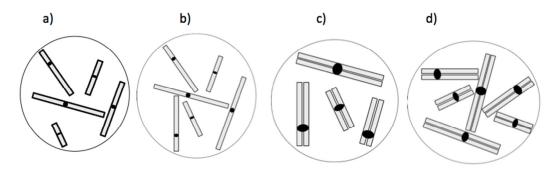
- a) haploid cells have half as many chromosomes than diploid cells.
- b) haploid cells have one full set of chromosomes while diploid cells have two.
- c) haploid cells' chromosomes have a different structure/shape from diploid cells' chromosomes.
- d) haploid cells have half the amount of DNA as diploid cells.

Expert answer: b

Alternatives/misconceptions ² :	a)	i) The absolute number of chromosomes determines ploidy.
		ii) Diploid cells always have more chromosomes than haploid ones, regardless of what species they come from; being haploid implies having fewer chromosomes.
	c)	i) Haploid cells' chromosomes have an "I" shape/structure, diploid cells' chromosomes have an "X" structure (confusion between replicated vs. unreplicated chromosomes and ploidy).
	d)	i) Total amount of DNA must be higher in 2n than in 1n cells.
		ii) Unsure about what a "set of chromosomes" is, but convinced that the absolute amount of DNA or the number of chromosomes does not

define ploidy.

Concept:	ploidy
Bloom level:	II
Difficulty index ¹ :	0.37
Discrimination index $(D)^1$:	0.38
D.E. ¹ :	0.50
Common incorrect answer ²	$a(31\%)^3$


¹Based on the answers of 193 1st year students when the item was used in a post-test. D.E.: discrimination efficiency.

² Compiled from 28 individual student interviews conducted as described by Adams and Wieman (2010).

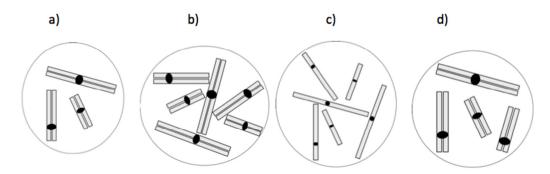
³ Percentage of students selecting this answer in our sample (N=193).

Question 4 [select all that apply]

One or more of the cells represented below are haploid. Which one is it/which ones are they?

Expert answer: a+c Alternatives/misconceptions: a)

i) Cells with an odd number of chromosomes are always haploid, uncomfortable/unsure with all the others.NOTE: if students don't pay attention to the instructions ("check all that applies"), this is usually the answer they choose.


b) i) [RARE] Haploid cells can't have chromosomes composed of two sister chromatids, and cells should not have odd numbers of chromosomes.

- a+b) i) Haploid cells can't have chromosomes composed of two sister chromatids.
 ii) Confusion between sister chromatids and homologous chromosomes (if there are sister chromatids, then the cell must be diploid).
- a+b+c) i) A cell is haploid if its chromosomes are not composed of sister chromatids, but also if there aren't chromosome pairs. [As long as there are even numbers of each chromatid, the cell is diploid].

Concept:ploidyBloom level:IIIDifficulty index2:0.54D:0.77D.E.2:0.83Common incorrect answers2 $a+b (23\%)^3$

<u>Question 5</u> [select all the answers that apply]

One or more of the cells represented below are diploid. Which one is it/which ones are they?

Expert answer: b+c

Alternatives/misconceptions: b)

- i) Diploid cells have pairs of homologous chromosomes ($\sqrt{}$), chromosomes always have an "X" structure.
- c) i) Diploid cells have pairs of homologous chromosomes (√), but when chromosomes have sister chromatids "they don't count" because otherwise "cells would always be diploid" [ploidy can only be determined when there are no sister chromatids].
- b+d) i) A diploid cell is one where chromosomes are composed of sister chromatids, but it can't have an odd number [of chromosomes].
- a+b+d) i) A cell is diploid if its chromosomes are composed of sister chromatids.
- b+c+d) As long as there are pairs of "matching chromatids", the cell is diploid ["matching chromatids" can be two sister chromatids or two pre-replication homologous chromosomes; students refer to what I called "matching chromatids" as "matching chromosomes" in both cases].

Concept:	ploidy	
Bloom level:	III	
Difficulty index:	0.48	
D:	0.81	
D.E.:	0.84	
Common incorrect ans	wers ²	$a+b+d (20\%)^3$, $b+c+d (13\%)^3$, overall $41\%^3$ of the
		answers included "d".