Supplemental Material CBE—Life Sciences Education

Hall et al.

Supplemental Materials

	Cohort 1	Cohort 2	Cohort 3	Cohort 4	Cohort 5
Number of Applications	30	75	108	112	113
Number Interviewed	10	12	13	13	14
Number Accepted	10	7	9	8	10
Acceptance Rate	33.3%	9.3%	8.3%	7.1%	8.8%
Externally Funded Scholars	2	1	1	1	2

Supplemental Table 1. Number of applications, interviews, and acceptances for UP during the first five years. The NIH grant funding UNC PREP provided funding for seven scholars during the first four years, then for eight scholars during year 5. An additional scholar could be funded in Cohort 1 due to several months of funding prior to scholars starting the program. One scholar in Cohort 2 was accepted but then rescinded his/her acceptance a week prior to the program starting resulting in six grant-funded scholars. This slot was rolled over to the next year; therefore, there were eight grant-funded scholars in Cohort 3. Each year, there were additional scholars supported by institutional funds and faculty research grants.

	Baseline	Post		
	Mean ±Std Dev	Mean ±Std Dev	Difference	P value
Overall	2.81±0.98	4.14±0.48	1.33	<0.0001
Answering Questions	2.71±1.06	4.05±0.74	1.33	<0.0001
Understanding Experiments	2.90±1.14	4.19±0.60	1.29	<0.0001
Methods	2.83±0.66	4.05±0.59	1.21	<0.0001
Interpreting Figures	2.71±0.96	3.90±0.70	1.19	<0.0001
Understanding Basis for Paper	3.26±0.94	4.38±0.67	1.12	0.0001
Relating paper to the Big Picture	2.88±1.14	4.00±0.84	1.12	<0.0001
Figure Legends	2.95±1.02	4.00±0.55	1.05	0.0005
Understanding Abstract	3.21±0.87	4.19±0.60	0.98	<0.0001

Supplemental Table 2. Scholar confidence in reading and interpreting scientific articles. Scholars reported their confidence level for understanding various aspects of a research article given during the baseline (Pre) and post-assessment during the SES critical analysis module. Responses are listed from largest to smallest increase (top to bottom) in confidence from pre- to post-assessment. Statistical significance between groups was determined using paired *t* tests.

N=34	Very Poor	Poor	Fair	Good	Very Good	Excellent	Mean±Std. Deviation
What is your assessment of the overall progress of the PREP student's research in your lab?	0%	3%	12%	24%	38%	24%	4.68±1.07
What is your assessment of the PREP students' growth as a researcher since being in your lab?	0%	3%	9%	21%	35%	32%	4.85±1.08
How would you rate the level of communication between you and the PREP student in your lab?	0%	0%	3%	29%	53%	15%	4.79±0.73
How would you rate the level of communication between you and the PREP staff?	0%	0%	0%	21%	32%	47%	5.26±0.79

Supplemental Table 3. Faculty mentor experiences with UP. At the end of the PREP year, faculty mentors were surveyed about their experiences hosting a PREP scholar in their lab. Responses were given on a 6-point scale (1, very poor; 6, excellent).

Overall, how satisfied are you with the PREP program? (N=34)						
1 - Very Dissatisfied	0%					
2	0%					
3	0%					
4	6%					
5	15%					
6	24%					
7 - Very Satisfied	56%					
Mean±Std. Deviation	6.29±0.94					

Supplemental Table 4. Faculty mentor overall satisfaction with UP. At the end of the PREP year, faculty mentors were surveyed about their experiences hosting a PREP scholar in their lab. Responses were given on a 7-point scale (1, very dissatisfied; 7, very satisfied).

How likely would you be to host another PREP student in the future? (N=34)							
1 - Not at all likely	0%						
2 – Not likely	0%						
3 - Somewhat likely	9%						
4 - Likely	26%						
5 - Very likely	65%						
Mean±Std. Deviation	4.56±0.66						

Supplemental Table 5. UP faculty mentor likelihood of hosting future UP scholars. At the end of the PREP year, faculty mentors were surveyed about their likelihood of hosting a future PREP scholar. Responses were given on a 5-point scale (1, not at all likely; 5, very likely).

	E	Baseline		Post	Wild	coxon
		Mean±Std.		Mean±Std.		
	Ν	Deviation*	Ν	Deviation*	Z	P value
Writing a personal statement for a	44	3.34±0.71	44	4.20±0.73	4.710	<0.0001
graduate school application		0.04±0.71		4.2010.70	4.710	
Preparing a scientific research	44	3.41±0.82	44	4.16±0.61	4.517	<0.0001
poster/talk						
Directing your own research project	43	2.84±0.95	44	3.70±0.76	4.429	<0.0001
Designing experiments to test a	43	2.74±0.82	44	3.68±0.71	4.410	<0.0001
hypothesis						
Writing a scientific research abstract	43	3.19±0.79	44	3.86±0.63	4.376	<0.0001
Communicating your research	44	2.82±0.84	44	3.55±0.73	4.335	<0.0001
findings in writing to other scientists						0.0001
Getting into the PhD program of your	44	3.41±0.92	44	4.30±0.76	4.208	<0.0001
choice	4.4	0.40.0.70	4.4	0.00.00	4.050	.0.0001
Interpreting Data	44	3.18±0.79	44	3.89±0.69	4.053	<0.0001
Presenting data at a lab meeting	44	3.18±1.02	44	4.00±0.75	3.967	<0.0001
Working independently in a science	44	3.30±1.00	44	4.07±0.62	3.795	<0.0001
research lab						-0.0001
Reading and interpreting scientific literature	44	3.25±0.87	43	3.95±0.72	3.688	<0.0001
Answering questions related to your						<0.0001
scientific research poster/talk	43	3.42±0.66	44	4.07±0.76	3.530	<0.0001
Understanding the process of getting						<0.0001
a PhD	44	3.82±0.84	44	4.39±0.58	3.499	<0.0001
Being at a large research institution	43	3.67±0.97	44	4.30±0.59	3.296	0.001
Communicating your research						
findings orally to other scientists	44	3.27±0.92	43	3.86±0.64	3.261	0.001
Talking to research faculty you don't						
know	43	3.23±0.97	44	3.82±0.95	3.147	0.002
Carrying out experiments (doing				4 40 0 55	0.405	0.000
bench work)	44	3.91±0.86	44	4.43±0.55	3.125	0.002
Discussing your data with people in		0.00.0.00		1.10.0.01	0.000	0.000
your lab	44	3.68±0.83	44	4.16±0.61	3.089	0.002
Analyzing a problem and formulating	44	2 20 . 0 70	11	2 60 0 74	2 000	0.003
a solution	44	3.20±0.73	44	3.68±0.74	3.020	0.003
Formulating a research hypothesis	43	3.19±0.76	43	3.70±0.94	2.920	0.004
Organizing Data	44	3.45±0.79	44	3.91±0.64	2.697	0.007
Having a successful science career	44	3.95±0.86	44	4.20±0.76	1.753	0.080
Being a scientist	44	3.98±0.82	44	4.25±0.72	1.732	0.083
Working with other scientists in a	43	3.98±0.71	44	4.18±0.76	1.694	0.090
group	-0	0.0010.71		4.1010.70	1.034	0.030

Supplemental Table 6. Scholar Confidence Pre- and Post-program. On the first day and during the last week of the program, scholars were asked, *"How confident are you in your current ability to do the following tasks?"* *Responses were given on a 5-point scale (1, very uneasy; 5, very confident). A higher mean response indicates a higher reported confidence level. Items are ordered by decreasing Z-value (top to bottom). A higher Z-value indicates a larger difference between Baseline and Exit means. Bold p-values are considered significant (p<.05, Wilcoxon Rank Sum Test).

		Exit	Alumni		
	Ν	Mean ±StdDev	N	Mean ±StdDev	
Program staff	44	4.68±0.71	33	4.73±0.72	
Research experience in mentor's lab	44	4.64±0.72	23	4.78±0.67	
ABRCMS Conference	41	4.39±0.97	30	4.70±0.53	
Social activities*	44	4.39±0.89	30	4.41 ± 0.68	
Practice oral presentations in group meeting	44	4.36±0.84	33	4.70±0.59	
Support during the grad school application/admissions/interview process	44	4.25±0.97	33	4.76±0.50	
Final Symposium Presentation*	24	4.17±0.92	30	4.63±0.56	
Personal Statement Workshops	43	4.12±1.00	30	4.46±0.92	
Academic support in classes	42	4.07±1.18	28	3.93±1.12	
Weekly group meetings (as a whole)*	44	4.05±0.91	32	4.47±0.67	
Summer Paper Reading Course	43	4.02±1.08	33	4.52±0.62	
Team building exercises on first day of program*	44	3.95±1.06	30	4.40±0.72	
GRE Prep (summer)	34	3.82±1.14	33	4.09±0.98	
Summer Session (bootcamp) as a whole*	44	3.77±1.05	30	4.21±0.82	
Lab Skills Course	44	3.64±1.28	32	3.53±1.29	
Individual Development Plan (IDP) meetings*	43	3.51±1.28	30	4.32±0.77	

Supplemental Table 7. Benefit of specific program components. During the last week of the program (Exit) and one year after participants left the program (Alumni), scholars were asked to rate how beneficial specific program components were to them. Responses were given on a 5-point scale (1, not beneficial; 5, extremely beneficial). A higher mean response indicates a higher reported benefit. Program components are listed in order of greatest reported benefit to least on the Exit Survey. *These items were administered in early 2016 for all alumni cohorts.

N=33	1 - Not Very Well	2	3	4	5	6	7 - Extremely Well	Mean±Std. Deviation
Overall, how well did UNC-PREP prepare you for success in graduate school?	0%	0%	3%	0%	12%	27%	58%	6.56±0.65

Supplemental Table 8. Preparedness for graduate school. One year after leaving PREP, scholars were asked, "*Overall, how well did UNC PREP prepare you for graduate school?*" Responses were given on a 7-point scale (1, not very well; 5, extremely well).

PREP Scholar Assessment and Individual Development Plan (IDP)

PREP Scholar's Name:

Faculty Mentor Name:

Please assess the PREP Scholar based on their performance compared to your expectations of a BBSP rotation student at UNC.

Below Target On Target **Exceeds Target** Skill 1 2 3 4 5 Scientific Writing **Presentation Skills** Work Ethic (time spent in the lab, effort while in the lab) Time Management Gets along with other lab members Informal discussion of science in the lab Critical Analysis of Scientific Literature Background knowledge in relevant subject area Bench work, Carrying out experiments Interpreting results, Analyzing data Responds well to feedback **Research Progress** Preparedness for Graduate School

(Place an "X" in the appropriate box.)

PREP Scholar Assessment and Individual Development Plan continued...

1. What are the PREP Scholar's strengths?

2. For skills that are below target (1-2), describe activities that would enable the student to enhance these skills.

3. Other Comments

Paper Reading Baseline Analysis UNC PREP Critical Analysis Course Summer 2015

PARP-1 regulates the expression of caspase-11 Yoo et. al. BBRC 2011

- 1. What is the main question/hypothesis being addressed in this paper?
- 2. What technique is being used to "knockdown" PARP-1?
- 3. Describe the control used in the PARP-1 knockdown experiments? What is the importance of this control?
- 4. The authors do a western blot (immunoblot) in Figure 1A to determine if there is a difference in the level of caspase 11 protein when PARP-1 is knocked-down. How do they then determine if this difference is due to regulation of transcription or translation?
- 5. How did the authors determine that PARP-1 binds (directly or indirectly) to the promoter of caspase-11?
- 6. Is PARP-1 always involved in the induction of caspase-11? How do you know?
- 7. Why is tubulin shown in the figures of western blots (immunoblots)?
- 8. In all experiments, the authors used LPS (Lipopolysaccharide a component of bacterial outer membranes). Why did they do this?
- 9. Let's say you joined this lab and were given the task of continuing the work presented in this paper. Describe a research question you would want to address to continue beyond this publication?

How confident were you in doing the following tasks related to the assigned reading?

	1	2	3	4	5
	Very	Somewhat	Somewhat		Very
	Uneasy	Uneasy	Confident	Confident	Confident
Understanding the abstract	1	2	3	4	5
Understanding the basis for the studies presented in the paper based on the introduction	1	2	3	4	5
Figuring out what experiments were done to generate the data in the figures	1	2	3	4	5
Interpreting the figures	1	2	3	4	5
Understanding the figure legends	1	2	3	4	5
Understanding the methods used in the paper	1	2	3	4	5
Finding a link between these studies and the "big picture"	1	2	3	4	5
Answering the questions about the reading	1	2	3	4	5
Overall reading the paper	1	2	3	4	5

Paper Reading Baseline Analysis Scoring Rubric UNC PREP Critical Analysis Course Summer 2015

PARP-1 regulates the expression of caspase-11 Yoo et. al. BBRC 2011

- 1. What is the main question/hypothesis being addressed in this paper?
 - Does PARP-1 regulate expression of caspase-11 (1pt)
- 2. What technique is being used to "knockdown" PARP-1?
 - RNAi (1pt) to reduce mRNA, and thus, protein levels of PARP-1 (1pt)
- 3. Describe the control used in the PARP-1 knockdown experiments? What is the importance of this control?
 - Vector pLKO.1 not containing PARP-1 shRNA were transfected into MEFs. (1pt)
 - Important to ensure "knockdown" phenotype was specific to the PARP-1 shRNAs (1pt)
- 4. The authors do a western blot (immunoblot) in Figure 1A to determine if there is a difference in the level of caspase 11 protein when PARP-1 is knocked-down. How do they then determine if this difference is due to regulation of transcription or translation?
 - Authors do RT-PCR (1pt) to measure mRNA levels of PARP-1 (1pt). A difference in Casp-11 mRNA levels would indicate transcriptional regulation whereas no difference would indicate translational regulation (1pt).
- 5. How did the authors determine that PARP-1 binds (directly or indirectly) to the promoter of caspase-11?
 - ChiP assay (1pt) on the promoter region of caspase-11 using PARP-1 antibody (1pt)
- 6. Is PARP-1 always involved in the induction of caspase-11? How do you know?
 - No (1pt), induction of caspase-11 by IFN-g is independent of PARP-1 (1pt).
- 7. Why is tubulin shown in the figures of western blots (immunoblots)?
 - To ensure that equal amounts of protein are loaded in each lane of the western blot (1pt)
- 8. In all experiments, the authors used LPS (Lipopolysaccharide a component of bacterial outer membranes). Why did they do this?
 - LPS is a potent stimulator of the inflammatory pathway and caspase-11 expression (1pt)
- 9. Let's say you joined this lab and were given the task of continuing the work presented in this paper. Describe a research question you would want to address to continue beyond this publication? (1pt)

PREP 2015 Methods and Techniques Assessment

Please indicate the method/s that would be most appropriate to address the research question posed in the scenarios below. You will not necessarily use all of the options to complete this assessment. Some may require more than one step/method for completion.

Agarose Gel
Sequencing
Immunoprecipitation
Microscopy
ELISA
Flow Cytometry

Western Blot Microdialysis/voltammetry RNA-seq Transgenic Mouse Fluorescence HHPRED Southern Blot RT-PCR RNAi BLAST *In Situ* Hybridization (FISH) ChIP-Seq

- 1. You have been assigned to characterize the protein MAPK in the breast cancer cell line MCF-7. First, you want to be sure that the MAPK protein is expressed in these breast cancer cells. How would you do this?
- 2. You've just successfully PCR'd a gene from your own DNA that you believe is responsible for causing an extreme chocolate craving. You're convinced that it contains a mutation because most normal people don't crave chocolate quite as much as you do. What is the first thing you will do to check to be sure that you have successfully PCR'd your product?
- Charcot-Marie-Tooth disease is a neurological disease caused by a duplication in a gene on chromosome 17. What method could be used to verify a duplication of a gene on chromosome 17 in a patient suspected of having this disease?

4. NUP98-DDX10 fusion causes a change in gene expression in cells based on microarray data. How could you confirm the changes in mRNA levels of specific genes that were identified by the microarray?

- 5. You have identified a previously uncharacterized gene associated with allergic asthma, *ZfpYFG*. You have developed an antibody that is highly specific to ZfpYFG and demonstrated that the protein is expressed in the airway epithelium. Interestingly, ZfpYFG has a zinc-finger domain, which means that it is able to bind DNA. You want to find out where ZfpYFG is bound in the genome, and what genetic motif ZfpYFG commonly binds. What assay can you use to determine both?
- 6. You think that ZfpYFG maybe a good target for therapeutic drugs in the treatment of allergic asthma. You know that you can predict drug targets based on active site topography. How can you go about predicting a preliminary structure for ZfpYFG?
- 7. You want to determine whether a vaccine induces a specific population of B-cells to become present in the blood stream of mice at one week post-injection. What type of procedure would you use to determine if the vaccine leads to an increase in the B-cell population compared to an unvaccinated control?
- 8. Dopamine is a neurotransmitter in the brain that is disregulated in many psychiatric disorders. You want to test whether a transgenic mouse model of schizophrenia has disregulated dopamine. How can you measure dopamine in the mouse brain in vivo?

9. You have hypothesized that the expression of HDAC-1 is required for Pax-2 expression in MDCK cells. How could you test the effect of the loss of HDAC-1 expression on Pax-2 expression in MDCK cells without a knockout mouse?