Supplemental Material CBE—Life Sciences Education

Auerbach and Schussler

Supplemental Material A

The three courses that comprised the new introductory biology curriculum each had a 1credit discussion integrated as part of the course. The organismal and ecological biology course (OEB; 3 credit hours) was held in large lecture format for two 50-minute class sessions per week, and then divided into nine GTA-led small group (approximately 25 students each) discussions for one 50-minute session per week (in a separate location). Similarly, the cellular and molecular biology (CMB) course also had nine sections of GTA-led small group discussions for 50 minutes of the 150 minutes of class time per week. The new 2-credit lab course (Skills of Biological Investigation) alternated between two weeks of lab work and one week of discussion to reinforce learning about the concepts and skills targeted by the lab. This coursewas approximately 25 students per section and led by GTAs, with faculty oversight. Regardless of course, the philosophy of the discussions was to practice interpreting or applying biology in a collaborative context, with the support of primary literature being especially prominent in the OEB and CMB discussions. All discussions were guided by explicit sets of learning objectives designed by the curriculum community who designed each course.

The following represents an overview of each of the discussions associated with the new introductory courses.

OEB Discussion

The goal for the OEB discussion was to support student understanding of modern scientific research and knowledge generation by improving their ability to read and interpret scientific literature. OEB focused primarily on the introduction, methods, and results portions of scientific articles, although entire articles were read by the end of the course. Specifically, the OEB discussion had five overall learning objectives:

- 1. Identify the purpose of a scientific study
- 2. Describe and evaluate a study's methods
- 3. Interpret figures
- 4. Synthesize scientific results and draw conclusions
- 5. Use a model to describe a system and make predictions

The curriculum was designed in three modules, with the first module focused on research with simple experimental designs that were best suited for mastering the first three learning objectives. The second module introduced articles that used more complex experimental designs and focused more intensely on the fourth and fifth objectives. During the third module, students worked in pairs on a final poster project, which required them to read two related research articles, interpret each, and then synthesize the findings of both articles into one overall conclusion. Modules one and two were either three or four weeks long and each ended with a quiz to test student understanding of the learning objectives. The third module ended with a poster presentation. These quizzes and poster presentations comprised 140 points out of the 250 points for the discussion portion of the course. The rest of the points were either homework assignments (50 points) or in-class group assignments (75 points), with 5 points for a dropped homework.

For each class session, students had a homework assignment that prepared them for the activities that would be done in class. The homework was completed individually. During the in-

class session students reviewed the homework, and then participated in small group work related to the scientific article. To scaffold the development of skills necessary to read a scientific article, parts of an article were often presented to students to read and then figures and other results were revealed incrementally, versus expecting students to read the entire article at one time. Class always ended with an assignment of homework for the next session.

To demonstrate the sequence of the course and the objectives, Table 1 below shows the specific learning objectives (often sub-objectives of the 5 overall objectives above) and activities for each week of class.

Week	Specific learning objectives	Activities
1	1a: Explain how a hypothesis is related to a	Introduction to discussion; What is
	scientific question.	a hypothesis?
2	1a: Explain how a hypothesis is related to a	Fecal transplants (van Nood et al
	scientific question.	2013)
	1b. Explain the purpose of a hypothesis.	
	2a. Use a diagram to illustrate the design of a	Identify the hypothesis,
	study or experiment.	independent and dependent
	3a. Identify and interpret the basic	variables, and how the design
	components of a graph	related to the hypothesis.
	3b. Interpret the relationship between	
	variables presented in a graph by explaining	Interpret a visual model of the
	the results in your own words.	research design and relate it to the
	3c. Connect figure elements to experimental	hypothesis
	design	
	4a. Determine whether data support or refute	Interpret one figure from the study
	a hypothesis.	results.
3	2a. Use a diagram to illustrate the design of a	Leaf cutter ants and fungal
	study or experiment.	pathogens (Currie and Stuart 2001)
	3a. Identify and interpret the basic	
	components of a graph.	Review the experimental design of
	3c. Connect figure elements to experimental	the study.
	design	
	4a. Determine whether data support or refute	Interpret three figures from the
	a hypothesis.	study in small groups.
	2b. Explain why authors designed their study	
	the way they did.	Class discussion of the implications
	3b. Interpret the relationship between	of the results.
	variables presented in a graph (including	
	significance).	(See example of the in-class activity
		below this Table)
4	Covered all learning objectives presented in	Quiz 1
	the class so far.	
5	1c. Given a body of text from a scientific	Plants and insect herbivores
	paper, identify the hypothesis being tested.	(Agrawal 1998)

Table 1: OEB course summary

	 2a. Use a diagram to illustrate the design of a study or experiment. 2b. Explain why authors designed their study the way they did. 4a. Determine whether data support or refute a hypothesis. 1e. Generate a graph of predicted results based on a hypothesis. 4b. Propose or identify a plausible mechanism to explain the results of an experiment/study. 4c. Synthesize multiple figures from a paper 	Explain the concept of plant defenses. Review the purpose of the study, experimental design, and draw the expected results (given the hypothesis). Review the actual results and discuss whether they support the stated hypothesis. Synthesize the results of three
		figure panels.
6	3b. Interpret the relationship between variables presented in a graph (scatterplot, and bar graph), including significance.	Recreational fishing and trophic cascades (Wilmer and Stone 1997)
	4b. Propose or identify a plausible mechanism to explain the results of an	Create a visual model of the species interactions in the article.
	 experiment/study. 4c. Synthesize the results from multiple figures. 2c. Determine whether a study is observational or involves a manipulative experiment. 	Review the purpose, methods, and results of each part of the study in small groups.
	 4d. Make an inference about causation or correlation based on the results of a study. 4e. Identify the 'take-home message' from a paper 	Jigsaw to share results.
	5a. Identify important components of a system and how they interact.5b. Develop a simple visual model to describe a system or process the student has	
	read about.	
7	1c. Given a body of text from a scientific paper, identify the hypothesis being addressed	Recreational fishing and trophic cascades (Altieri et al 2013)
	 2c. Determine whether a study is observational or involves a manipulative experiment. 4d. Make an inference about causation or 	Design a manipulative experiment to test an observation from the article.
	a. Make an interence about causation of correlation based on the results of a study.2d. Identify the strengths and weaknesses in study design (realism, logistics, level of	Create a model of the species interactions for this ecosystem.
	control, causality)	Analyze the methods of the study.

		Choose groups and articles for final project (course leaders pre- identified 14 pairs of articles from which students select).
8		Quiz 2
9	All learning objectives	Final Project Group Work
		Work with final project partner on
		interpreting the methods of the
		articles.
10	All learning objectives	Final Project Group Work
		Work with final project partner on
		interpreting the results of the
		articles.
11	All learning objectives	Presentation of Final Projects
		Students present a poster in which
		they interpret each article
		individually and then synthesize the
		two articles together.

The following figure illustrates the experimental design used by Currie and Stuart (2001) to investigate weeding behavior by leaf cutter ants. Use this figure to answer the questions below. Note that for some of the questions you will need to fill in missing information on the diagram.

1. What treatments did they use in their experiment and what was their sample size for each treatment? Fill in the *basic* description of each treatment and the sample size on the diagram above. In the space below, explain why they included each specific treatment in their experiment. (2.5 pts)

The following figure and represents one of the main results from Currie and Stuart (2001). Use this graph to answer the questions below and turn this in to your TA before leaving discussion.

Escovopsis in intact colonies of *A. colombica*. (a) The average proportion of workers located on the

top surface of the garden (n=5). Bars sharing letters are not significantly different and error bars

represent standard errors.

- 1. Annotate the figure using the following questions as a guide: (1 pt)
 - i. Indicate which axis shows the independent variable.
 - ii. Indicate which axis shows the response they measured (dependent variable).
- 2. Interpret this graph. (Summarize the results in your own words, including whether any differences are statistically significant.) (2 pts)
- 3. Assuming that the ants on top of the garden were engaging in "weeding" behavior, do the results above support the authors' hypothesis that: (1 pt)
 - i. Ants "weed" their fungus gardens to remove Trichoderma fungi?
 - ii. Ants "weed" their fungus gardens to remove *Escovopsis* fungi?
- 4. Assuming that colonies with a higher proportion of ants on top of the garden were working harder to control fungi, do the results above support your hypothesis about which fungus the ants would work harder to control? Which treatments did you compare to come to this conclusion? (1 pt)

CMB Discussion

The overall goal for the CMB discussion was the same as the overall goal of the OEB discussion: to support student understanding of modern scientific research and knowledge generation by improving their ability to read and interpret scientific literature. The discussion associated with the CMB course was structured to be similar to how the OEB course functioned (including the same module, quiz and final project structure, homework and in-class activity structure, and general assessment structure), except it focused more on arguments made from scientific data (often found in the discussion section of papers) and had a stronger focus on conceptual topics. The specific learning objectives for the course were:

- 1. Write and analyze scientific arguments from data
- 2. Use an argument to make predictions about future research directions
- 3. Explain the contribution of multiple sets of data and arguments to the progression of scientific knowledge
- 4. Articulate an understanding of the cellular and molecular aspects of DNA, photosynthesis, and disease

The sequence of the course by week is shown below, along with the learning objectives and overview of activities.

Week	Learning objectives	Activities
1	Write and analyze scientific arguments from	Hershey and Chase, 1952
	data Articulate an understanding of the cellular and molecular aspects of DNA, photosynthesis, and disease	Students learn the four components of an argument (claim, evidence, qualifier, inference). Students work in groups to write the argument Hershey and Chase would have made about their experiment.
		Hershey and Chase article and identify the argument components from it.
2	Write and analyze scientific arguments from data	Franklin, Vischer and Chargaff, and Chargaff
	Explain the contribution of multiple sets of data and arguments to the progression of scientific knowledge	Students receive data from three famous early DNA experiments and write the arguments that each should have made from their data sets.
	and molecular aspects of DNA, photosynthesis, and disease	Students work together to create a table of what pieces of data each group had and why each on their own was not able to solve the puzzle
3	Write and analyze scientific arguments from	of the structure of DNA. Watson and Crick and Pauling
5	data	watson and Crick and Launing
	Use an argument to make predictions about future research directions	Students bring in their homework where they have dissected either the arguments for Watson and Crick and Pauling's articles.
	Explain the contribution of multiple sets of data and arguments to the progression of scientific knowledge	In small groups, finalize the arguments and then form jigsaw groups so that each group has
	Articulate an understanding of the cellular and molecular aspects of DNA, photosynthesis, and disease	members who analyzed Watson and Crick and who analyzed Pauling.
		Discuss the soundness of the arguments that each made, and why Watson and Crick's model was ultimately correct and Pauling's was wrong.

Table 2: CMB course summary

		Students discuss what experiments they thought Watson and Crick should have done next. (See example in-class activity after this table)
4	Write and analyze scientific arguments from data Explain the contribution of multiple sets of data and arguments to the progression of scientific knowledge Articulate an understanding of the cellular and molecular aspects of DNA, photosynthesis, and disease	Gutman et al., 2014 Students read an article on telomere length and aging as homework, and then interpret figures from the paper as a group at the beginning of class. Different groups then receive different data sets about factors that impact telomere length (such as diet, sleep, etc.) and interpret the data and write the argument that should be made from those data. Students then engage in a class discussion about the integration of these data sets to inform their understanding of factors that impact
5	All learning objectives	Ouiz 1
5 6	All learning objectives Write and analyze scientific arguments from data Use an argument to make predictions about future research directions Explain the contribution of multiple sets of data and arguments to the progression of scientific knowledge Articulate an understanding of the cellular and molecular aspects of DNA, photosynthesis, and disease	Quiz 1 Schulze et al., 2013; Willuda et al., 2012 Students read about C3 and C4 photosynthesis and come into class and create a conceptual diagram that represents the two processes. They then identify the location of a critical enzyme called Glycine decarboxylase (GDC) in the C3 and C4 pathways. Students interpret two figures from the articles that show activity of this enzyme with each pathway, and localization of this enzyme in the plant leaves.

		Students then discuss the
		implications of these figures to the
		development of the C4 pathway
		development of the C4 pathway.
		The homework for the next week is
		to brainstorm what thay think the
		to brainstorm what they timk the
		authors of these studies did next in
		their research.
7	Write and analyze scientific arguments from	Students start by trying to predict
/	data	what questions the authors of last
	data	what questions the authors of last
		week's articles would try to answer
	Use an argument to make predictions about	in their next research articles.
	inture research directions	
		Students are presented with figures
	Explain the contribution of multiple sets of	from the next research the authors
	data and arguments to the progression of	did, and interpret and write
	scientific knowledge	arguments for these data.
	Articulate an understanding of the cellular	
	and molecular aspects of DNA,	
	photosynthesis, and disease	
8	Write and analyze scientific arguments from	Students read an article about how
0	data	scientists are trying to angineer C4
	data	pathways into grop plants to make
	Use on anoument to make madiations should	them more drought tolerant
	future research directions	them more drought tolerant.
	Tuture research directions	Students have to seemsh the literature
	E	Students have to search the interature
	Explain the contribution of multiple sets of	and find an abstract of an article
	data and arguments to the progression of	where they are doing this type of
	scientific knowledge	engineering.
	Articulate an understanding of the cellular	In class students work in groups to
	and molecular aspects of DNA	synthesize the state of the field and
	and molecular aspects of DNA,	make predictions about the future
	photosynthesis, and disease	make predictions about the future
		research directions in this area.
		Students select groups and paper sets
		for the final presentations
9	All learning objectives	Ouiz 2
10	All learning objectives	Group work related to the methods
10		of the two articles
11	All learning objectives	Group work related to the results of
		the two articles
		the two articles

12 I mai project presentations	12 A	All learning objectives	Final project presentations
--------------------------------	------	-------------------------	-----------------------------

In-class session, Module 1, Week 3

In small groups, discuss the following and turn in at the end of class

Use the table below to structure/guide the discussion on Question1:

	Pauling	Watson / Crick
What was the data used in the argument?		
Was the quality of the argument (based on the data) sound?		
Why was the argument right or wrong?		

1. Given the two models and associated arguments (based on the data sets), choose the most sound argument and give your reasoning. Why was Pauling's model incorrect? Did he have bad / unsound data or a bad / unsound argument?

2. How did Watson and Crick use multiple sets of data and arguments to contribute to the progression of scientific knowledge?

3. What arguments were used by Watson and Crick to support the claim that Pauling's model was incorrect?

Lab Discussion

The goal for the lab discussion was to support student performance of their own scientific investigations, and come to an understanding of how the scientific literature supports these investigations. The specific learning objectives for the course were:

- 1. Distinguish between and develop your own scientifically-appropriate hypotheses and predictions
- 2. Find and use scientific literature to frame your experimental designs
- 3. Organize, analyze, and interpret your scientific data
- 4. Communicate your scientific results in written and verbal forms (including creation of figures and tables)
- 5. Design and carry out your own scientific investigations

There were four discussion periods and four two-week long lab experiences in the course, as well as a two week long final oral presentation period. The points in the course consisted of written lab communications (90 points), lab quizzes (60 points), in-class assignments and participation (77 points), student final oral presentation (60 points), and in-class mini-oral presentations (28 points), which added up to 315 possible points, with a course maximum of 300 points. The two-week long labs were guided inquiry in nature, where students were introduced to the research

system in week one, collected and analyzed preliminary data, and then were given additional variables that they could choose to manipulate. They then either set-up or designed their own investigation at the end of week one, and then implemented, collected and analyzed data, and presented mini-oral presentations of their results in week two.

Week	Learning Objectives	Activities
1	Distinguish between and develop your	Meter stick drop activity
	own scientifically-appropriate	
	hypotheses and predictions	Students measure the distance that a
		meter stick drops under different
	Use scientific literature to frame your	conditions (visual or oral cue for re-
	experimental designs	capture) and then design their own
		experiment on this system.
	Organize, analyze, and interpret your	
	scientific data	Students make hypotheses and
		predictions, design an experiment
	Design and carry out your own scientific	(based on a brief literature review of
	investigations	factors that impact reaction time),
		collect data, enter data into Excel to
		produce summary statistics and
		figures, and come to a conclusion.
2	LAB	Fungal and plant interactions lab
		week 1
3	LAB	Fungal and plant interactions lab
		week 2
4	Organize, analyze, and interpret your	Written communications
	scientific data	
		Students bring their analyzed data
	Communicate your scientific results in	from the fungal and plant interactions
	written and verbal forms (including	lab and come to class having read one
	creation of figures and tables)	article related to this lab.
		They are given an overview of the
		sections of a written communication
		and then work with their group to
		produce an outline a written
		communication for the lab
		communication for the lab.
		They look up scientific literature to
		cite in discussion
		At the end of class, students are
		introduced to the topic of the next lab.
5	LAB	Bacterial growth
6	LAB	Bacterial growth

Table 3: Summary of lab discussions

7	Distinguish between and develop your	Inferences
	own scientifically-appropriate	
	hypotheses and predictions	Students start the discussion by peer
		reviewing the written
	Organize, analyze, and interpret your	communications they produced for
	scientific data	their bacterial growth lab.
		Students are introduced to the idea of
		empirical data versus inference by an
		activity where they infer a phylogeny
		from empirical characteristics of a
		group (first with the chordate group
		small groups)
		sinan groups).
		Groups present their inferred
		mammal skull phylogeny and then
		compare their findings with a recent
		phylogeny produce by genetic data.
		They discuss models in science and
		uncertainty.
		Students are then introduced to the
		mammal skull lab they will be doing
0	LAD	In class.
<u> </u>		Mammal skull lab
9	LAD Distinguish between and develop your	Experimental design
10	own scientifically-appropriate	Experimental design
	hypotheses and predictions	Students are introduced to
		experimental designs that are more
	Find and use scientific literature to	complicated than just a manipulation
	frame your experimental designs	of one variable. They are also
		introduced to an experimental system
	Design your own scientific	involving the behavior of flour
	investigations	beetles.
		Studente cheame the bestler and 1
		for and read literature on animal
		behavior collect preliminary data
		and then propose an experiment or set
		of experiments that they will conduct
		on the flour beetles next week.
11	LAB	Flour beetle lab
12	LAB	Flour beetle lab (build on the findings
		from week 1)

13	Distinguish between and develop your	Final oral presentations
	hypotheses and predictions	In pairs, students select a topic that has been discussed in lab over the
	Find and use scientific literature to frame your experimental designs	semester and are challenged to present a research proposal on an
	Communicate your scientific results in written and verbal forms (including	investigate this system further.
	creation of figures and tables)	They must present primary literature to support their hypothesis and experimental design, and show results that would be expected if their
		hypothesis was correct.
		The presentation is done in the form of a powerpoint.

*The full curricula for these discussions is available by contacting the project PI: Elisabeth Schussler. The curricula were created as part of an NSF TUES Project (DUE 1245215).

Supplemental Material B

Test of Scientific Literacy Skills (TOSLS; Gormally, Brickman, & Lutz, 2012) question numbers (from the original instrument) used in this study and how they aligned with each skill category.

TOSLS Skill	TOSLS Question Number
Identify a valid scientific argument	1
Understand elements of research design	4, 25
Make a graph	5
Read and interpret graphical representations of data	2, 6, 7, 18
Solve problems using quantitative skills	16, 20, 23
Understand and interpret basic statistics	3, 19, 24
Justify conclusions based on quantitative data	21, 28