Table S1: Outline of Progression and Condensed Description of Levels

Progression Level

1	2	3	4	5	6			
Construct A: Genetic organization								
Recognize that correlation exists, but all incorrect	2 correct	3 correct	4 correct	5 correct	All 6 correct			
Construct B: Gen	nes code for protein	S						
Genes non- informational	Genes informational	Genes instruct the body at levels	Genes code for cell entities	Genes code for proteins	Genes translated into protein			
Construct C1: Proteins do the work of the cell								
Cells perform functions	Proteins good for your body	Proteins do cell's work	Protein function depends on structure	Protein structure and function depends on amino acids in the protein	NA			
Construct C2: Proteins connect genes and traits								
Changes to genes change traits	Changes to genes change cells	Changes to genes change proteins	Changes to genes change proteins to change traits	Changes to genes change amino acids in proteins	Changes to genes change protein functions to change traits			
Construct D: Cells express different genes								
Cells different because they are in different places in the body	Cells different because they have different functions	DNA tells cells to be different	Different cells have different proteins for their functions	Somatic cells have same DNA but different proteins	Somatic cells have same DNA to express different proteins			
Construct E: Gen	netic information is	passed on to offsp	ring					

Progression Leve	el				
1	2	3	4	5	6
Organisms can only get traits of their parents	Offspring get half of DNA from each parent	Alleles are randomly assorted	Chromosomes are randomly assorted	Chromosomes can swap sections increasing genetic variation	NA

Construct F: There are patterns of correlations between genes and traits

|--|

Construct G1: DNA varies between and within species

Organisms have different traits or functions	Organisms have different DNA	Organisms have different DNA even within a species	Organisms within species have both similar and different DNA		The more conserved DNA is between species, the more important the gene product
--	---------------------------------	---	---	--	--

Construct G2: Changes to genetic information result in increased variation and can drive evolution

			DNA changes can		
Species look and	Organisms within	Changes to an	be beneficial,	DNA changes lead	
function	a species look and	organism can be	neutral, or harmful,	to increased	NA
differently	function	beneficial or harmful	and can change	genetic variation	INA
unrelently	differently		protein	and evolution	
			structure/function		

Construct H: The environment interacts with genetic information

Table S1: Outline of Progression and Condensed Description of Levels

Progression Level 1 2 3 4 5 6 Environment can Environment can Environment can change genes Environment can Environment can change type and which change Environment can change or mutate affect traits or affect our cells, amount of proteins affect organisms things inside of a proteins, or change functions that influence cell organs, or tissues cell gene expression of function proteins Construct I: Only mutations in gametes can be passed on to offspring Level 3 + Only mutations in A change of traits **DNA** mutations mutations to gametes can be can be passed can be passed somatic cells are NA NA passed down to down to offspring down to offspring passed on to offspring descendent cells

Construct J: Gene expression can change at any point during an organism's lifespan

Gene expression is not regulated or controlled, or does not change Genes can be turned on during development	Genes can be turned on and/or off only during key life stages	Gene expression can change at any point during one's life	NA	NA
---	--	--	----	----

Unit Driving Question	Instructio nal Time	Purpose	Description of Activities/Investigations	Constructs Addressed
Pre-Assessment (earl	y October)			
How do cells become cancerous? [Intervention Unit]	2.5 weeks	Students explore how cells become differentiated by expressing certain proteins and how abnormal protein expression can lead to cancer.	Students examine different types of cells, describe how the structure of cells relates to function, and relate expressed proteins to different cell types. Students discover how stem cells differentiate by expressing different proteins and compare stem cells to cancer cells.	B*, C1*, C2*, D*, H*
Why are Siamese cats colored the way they are? [Intervention Unit]	2.5 weeks	Students explore protein structure and function to learn how proteins lead to observable traits.	Students examine paper and computer models of enzymes and other proteins, including molecular motors, to determine the relationship between structure and function. Students discover that under certain conditions, enzymes can denature and fail to perform their function. Students develop an explanation for how proteins in Siamese cats lead to observable traits.	C1*, C2*, H*
How can <i>Hyla</i> <i>chrysoscelis</i> , a native frog, tolerate being frozen?	1.5 weeks	Students examine protein expression and function in a frog species. Students relate protein function to observable and advantageous traits.	Students consider how proteins may facilitate water and nutrient transport and how transport may help protect a living organism during a freeze cycle. Students develop an explanation for how proteins in frogs lead to observable, advantageous traits.	C1*, C2, G1, G2*, H*
Midpoint-Assessment	t (mid Novem	ber)		
How can we reduce the risk of obesity in our community?	2.5 weeks	Students investigate the structure and function of key macromolecules (protein, carbohydrates, lipids, and nucleic acids).	Students explore the structure and function of proteins, carbohydrates, lipids, and nucleic acids in food and in the human body. Students develop an explanation for how nutrients from food are used in by the human body.	A, B*, C1,

 Table S2: Instructional Design and Activities Related to Constructs

How can there be a case of disputed maternity? [Intervention Unit]	2.5 weeks	Students explore genetic inheritance and realize that connections exist between meiosis and patterns of inheritance.	Students examine DNA structure, chromosome structure, and karyotypes to determine differences and similarities between parents and offspring. Students investigate meiosis and fertilization to determine patterns of inheritance.	A, B, C1, C2, E*, F*, I
Can we genetically engineer a superhuman? [Intervention Unit]	2.5 weeks	Students examine how DNA mutations can alter protein structures and functions in both bad (genetic diseases) and good (superhuman) ways.	Students explore genetic diseases and their causes at the gene, protein, cell and trait levels. Students examine the sources and types of mutations, and how mutations to DNA can change protein structures and functions. Students also explore how observable traits can be explained by Mendelian and non- Mendelian genetics.	A, B*, C1, C2, D*, E*, F*, I
How can we diagnose and develop a treatment plan for a simulated patient with a genetic disease?	2 weeks	Students use their understanding of molecular genetics developed throughout the learning sequence to diagnose and develop a novel treatment for a simulated patient with a genetic disease.	Students receive a history and physical for a simulated patient with a genetic disease. Students investigate the symptoms, relate symptoms to specific proteins, and determine protein mutations causing the symptoms. Students propose novel treatments to reverse the effects of the protein mutation.	A, B, C1, C2, D, E, F, I

Post-Assessment (mid March)

* Indicates a key construct for the unit Note: Instructional period spanned ~23 calendar weeks; targeted instruction to genetics constructs (after accounting for holidays, snow days, other instruction during this time) spanned ~16 weeks.

Used with permission from Todd, Romine, & Cook Whitt, 2017.