# Supplemental Material CBE-Life Sciences Education

Maloy et al.

#### Supplemental Materials

**Table S1.** Seductive detail scripts used in lecture videos. Scripts are listed alongside the associated video lecture topic and the course learning outcome most closely aligned to the associated topic.

| Associated<br>topic                                    | Associated<br>learning<br>outcome                                                                                                               | Seductive detail topic           | Seductive detail script                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mendelian<br>genetics and<br>Independent<br>assortment | Explain how<br>independent<br>assortment of<br>alleles during<br>meiosis can lead<br>to new<br>combinations of<br>alleles of<br>unlinked genes. | Artificial<br>selection          | Long before humans understood<br>the underlying genetic basis for<br>heredity, we used our observations<br>of simple genetic patterns like the<br>ones Mendel observed in peas to<br>engage in artificial selection of<br>crops and livestock. Roughly 2,000<br>years ago, farmers in the<br>Netherlands bred a black breed of<br>cattle with a white breed of cattle to<br>produce the familiar black and<br>white spotted cow we commonly<br>see in the U.S. today. This breed,<br>which we now refer to as Holstein<br>cows, was selected by early<br>farmers to produce as much milk<br>as possible while thriving on limited<br>feed resources. In the 1850's,<br>increasing demand for dairy in<br>North America led a Massachusetts<br>man named Winthrop Chenery to<br>import the legendary milk<br>producers to the United States.<br>Now, there are over 9 million dairy<br>cows in the United States, and<br>about 90% of them are the same<br>Holstein breed that was artificially<br>selected by Dutch farmers long<br>ago. |
| Consanguinuity<br>and pedigree<br>analysis             | Calculate the<br>probability that an<br>individual in a<br>pedigree has a<br>particular<br>genotype.                                            | Ellis-Van<br>Crevald<br>Syndrome | Ellis-Van Crevald syndrome is an<br>autosomal recessive condition<br>which causes extra fingers and<br>shorter arms and legs to develop.<br>Only about 150 people around the<br>world have reported having this<br>condition, but the largest group of<br>affected individuals are part of the<br>Old Order Amish population of<br>Pennsylvania and the West<br>Australian native population. This                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Table S1 (Continued).

|                           | 54).                                                                                                                                                                                                                               |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |                                                                                                                                                                                                                                    |                                       | is because these groups practice<br>endogamy, which means they only<br>marry within the community. As a<br>result of increased awareness,<br>Amish youth are now frequently<br>opting to marry outside of the<br>community.                                                                                                                                                                                                                                                                                            |
| ABO Blood types           | Discuss how<br>various factors<br>might influence<br>the relationship<br>between<br>genotype and<br>phenotype (e.g.<br>incomplete<br>penetrance,<br>variable<br>expressivity, sex-<br>limited<br>phenotypes, and<br>co-dominance). | ABO<br>Incompatibility                | Do you know what happens when<br>you are given an incompatible<br>blood type? One experiences<br>something called an ABO<br>incompatibility reaction, which<br>includes symptoms such as<br>difficulty breathing, muscle aches,<br>and urine blood. This is why blood<br>centers around the world take great<br>care to match blood from donors<br>with compatible recipients.                                                                                                                                         |
| Polygenic traits          | Explain how<br>continuous traits<br>are the result of<br>many different<br>gene<br>combinations that<br>can each<br>contribute a<br>varying amount<br>to a phenotype.                                                              | Inclusivity in<br>makeup<br>marketing | Many people complain about not<br>being able to find a foundation that<br>will match their skin color. This is<br>why L'Oréal True Match foundation<br>offers 33 shades to choose from,<br>claiming it will fit anyone who tries<br>it. But are there only 33 skin colors<br>possible? Actually, a total of 378<br>loci are responsible for determining<br>skin color, so even this "broad"<br>range won't cover everyone. This<br>means that less than 10% of skin<br>colors are actually "matched" by<br>True Match. |
| Chromosomes<br>and ploidy | Explain the<br>meaning of ploidy<br>and how it relates<br>to the number of<br>homologues of<br>each<br>chromosome.                                                                                                                 | Seedless<br>watermelon                | There's nothing quite like biting into<br>a fresh, juicy watermelon on a hot<br>summer day. And thanks to<br>modern agricultural methods, you<br>don't have to worry about ending<br>up with a mouthful of hard, inedible<br>watermelon seeds. Seedless<br>watermelons were developed in<br>1939 by a group of Japanese<br>scientists who crossed a tetraploid<br>parent with a normal diploid parent<br>to produce a triploid variety of<br>watermelon. Because triploid plants                                       |

| Table S1 (Continue                                           |                                                                                                                                       | 1                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                              |                                                                                                                                       |                                                | tend to be sterile, this new<br>watermelon didn't have any seeds!<br>Unfortunately, the lack of seeds<br>also made it harder and more<br>expensive to produce seedless<br>watermelons in large quantities.<br>Because of this, seedless<br>watermelons were rare throughout<br>most of the 20 <sup>th</sup> century. More<br>recently, the popularity of seedless<br>watermelons has exploded, and<br>nearly 85% of watermelons sold in<br>the United States today are these<br>seedless triploid watermelons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Thomas Hunt<br>Morgan's<br>chromosomal<br>theory of heredity | Describe<br>Morgan's<br>experiment which<br>shows that the<br>white gene of<br>Drosophila is<br>inherited in a sex-<br>linked manner. | Drosophila<br>sexual<br>behavior               | Drosophila melanogaster,<br>otherwise known as the lowly fruit<br>fly, has a lot more in common with<br>us than you might think! Nearly<br>75% of disease-associated genes<br>in humans are thought to have a<br>functional equivalent in the fly. This<br>is one reason that flies can be such<br>a useful tool in the study of human<br>diseases. The genetic similarities<br>also lead to some interesting<br>similarities in behavior between<br>fruit flies and humans. Here's one<br>example: in 2012, researchers at<br>UCSF did an experiment to see<br>how fruit flies reacted to rejection.<br>They put some flies in tubes where<br>they could mate with each other,<br>and other flies in tubes where they<br>couldn't mate. Then, they let the<br>flies choose between drinking<br>normal food, or food with alcohol.<br>Surprisingly, the flies that had just<br>experienced rejection drank an<br>average of four times as much<br>alcohol! Just like humans, it turns<br>out that rejected flies also drown<br>their sorrows. |
| Aneuploidy in<br>humans                                      | Discuss how<br>errors in<br>chromosome<br>number can arise<br>during meiosis,<br>and why such                                         | Klinefelter<br>Syndrome<br>medical<br>advances | Klinefelter syndrome results from a<br>nondisjunction event during<br>meiosis where a male ends up with<br>three sex chromosomes: two X<br>chromosomes and a Y<br>chromosome. This syndrome is<br>one of the most common                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Table S1 (Continue | _ /                                                                                                                                                                                                                                                                                 |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | alterations can be<br>detrimental.                                                                                                                                                                                                                                                  |                                               | chromosomal disorders, affecting<br>between 1:500 and 1:1000 males.<br>Prior to the 21 <sup>st</sup> century, individuals<br>with Klinefelter syndrome were<br>unable to father a child since only<br>about half of males who have this<br>condition produce sperm in the<br>testicles. A newly developed<br>treatment is capable of extracting<br>sperm pockets in the testicles of<br>men who have Klinefelter<br>syndrome but still produce a small<br>amount of sperm. This sperm is<br>used for IVF treatments and in 45%<br>of cases results in a live birth,<br>giving hope to the men who have<br>this condition today, many of whom<br>will not be diagnosed unless they<br>seek medical attention for<br>suspected infertility.                                                                                                                                                                                                                                                                                           |
| Genetic mapping    | Explain how<br>genetic distance<br>is different from<br>physical distance.<br>Calculate gene<br>linkage and<br>genetic map<br>distances and<br>interference from<br>frequency of<br>progeny with<br>recombinant<br>phenotypes from<br>2-factor and 3-<br>factor genetic<br>crosses. | 23andMe,<br>inclusivity in<br>genetic studies | For a long time, genetic studies<br>were done with fairly homogenous<br>subject populations. Because of<br>this, over 90% of the research we<br>have on the genetics behind<br>human diseases applies to<br>individuals of European descent<br>alone. These historic disparities in<br>human genetics research can have<br>important consequences for non-<br>Europeans, who have not<br>benefitted equally from the huge<br>advances in genetics research. A<br>relatively new company called<br>23andMe is aiming to correct this<br>problem. 23andMe supplies<br>affordable saliva collection kits to<br>customers around the world. They<br>use this saliva to collect DNA and<br>determine single nucleotide<br>variations between individuals at<br>specific points in the genome.<br>Using an approach called mapping<br>by admixture linkage<br>disequilibrium, 23andMe can<br>identify single nucleotide variations<br>that are associated with disease in<br>a broader, less Eurocentric<br>population. These new linkage |

|                                           | , a.,.                                                                       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Probability                               | Calculate the<br>probability that an<br>individual has a<br>given phenotype. | The Mendelian<br>paradox                          | mapping techniques increasingly<br>employed by 23andMe as well as<br>other major research teams have<br>the potential to expand our<br>knowledge of human genetics and<br>improve the efficacy of medical<br>interventions in diverse<br>populations.<br>Gregor Mendel was a friar, a<br>scientist, anda liar? When<br>statisticians analyzed Mendel's<br>data, they found that there was<br>only a 0.2% chance that Mendel<br>obtained the numbers he did. Why<br>would he lie? At the time no one<br>believed Mendel's hypotheses, and<br>it's possible he felt the need to<br>falsify the results to fit his<br>hypotheses so closely that he<br>would attract the attention of other<br>scientists. His work actually didn't<br>receive much attention until after<br>he died, but his studies ultimately<br>resulted in the formation of several<br>scientific laws that are still<br>observed today. Fortunately even if<br>he <i>did</i> lie, his studies have been<br>replicated and the resulting laws<br>have been found to hold true. |
| The one gene,<br>one enzyme<br>hypothesis | Discuss Beadle<br>and Tatum's "one<br>gene, one<br>enzyme"<br>hypothesis.    | Military funding<br>of science in<br>World War II | Many of Beadle's most important<br>experiments with <i>Neurospora</i> were<br>carried out during World War II.<br>One reason for Beadle's success<br>was his ability to convince the<br>United States military that his<br>research was relevant to the U.S.<br>war effort. He argued that his<br><i>Neurospora</i> mutants that were<br>unable to synthesize a particular<br>vitamin could be used in<br>determining the concentration of<br>that vitamin in growth medium.<br>Beadle proposed that this would<br>lead to the more efficient<br>manufacture of vitamins and amino<br>acids by pharmaceutical and<br>nutrition companies, thus producing<br>more efficient food to supply the<br>enormous nutritional needs of the                                                                                                                                                                                                                                                                                                               |

| Table S1 (Continue       | 50).                                                                                                      |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                                                                                                           |                                                 | military. Because Beadle was<br>successful in connecting his<br>research to the U.S. war effort, his<br>staff could remain in his lab to<br>continue their research rather than<br>being drafted into the military,<br>which happened with some<br>competing research groups. The<br>funding Beadle received from an<br>association of manufacturers of<br>military rations was one of the<br>earliest examples of military<br>funding of biology research.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Replica plating          | Design a screen<br>for isolating<br>antibiotic<br>resistance<br>mutants and<br>auxotrophic<br>revertants. | The history of<br>biology in<br>NASA            | Replica plating was a technique<br>developed by Joshua and Esther<br>Lederberg, who are considered two<br>of the pioneers of bacterial<br>genetics. Joshua and Esther<br>married after meeting at work in a<br>Yale biology lab. The couple are<br>credited with developing some of<br>the most important tools used by<br>bacterial geneticists. While Esther<br>was known to make brilliant<br>contributions to genetics, in<br>particular coming up with the<br>technique for replica plating, her<br>husband had strong ideas about<br>the biological impact of space<br>exploration. He was concerned that<br>extraterrestrial microbes might gain<br>entry to the Earth onboard<br>spacecraft, causing catastrophic<br>diseases. He also argued that,<br>conversely, microbial<br>contamination of man-made<br>satellites and probes may obscure<br>the search for extraterrestrial life.<br>He advised quarantine for returning<br>astronauts and equipment. He led<br>to biology having a larger role in<br>NASA. |
| Bacterial<br>conjugation | Diagram bacterial<br>conjugation from<br>mating through<br>recombination.                                 | Agrobacterium<br>applications in<br>agriculture | Conjugation is often thought of as<br>bacterial 'sex'; that is, one<br>bacterium exchanging genetic<br>information with another bacterium.<br>However, some bacteria undergo<br>conjugation with plants as well! In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Table S1 (Continued). |
|-----------------------|
|-----------------------|

| Table S1 (Continue          | su).                                                                                                                         | 1                                                                      | · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             |                                                                                                                              |                                                                        | particular, one soil bacterium called<br>Agrobacterium has been widely<br>studied because of its extraordinary<br>ability to transfer DNA between<br>itself and plants, often causing<br>tumor-like growths on infected<br>plants. Luckily, scientists have<br>discovered how to rewire pesky<br>Agrobacterium so that instead of<br>transferring genes that make plants<br>sick, they can transfer genes that<br>benefit the plant's growth,<br>hardiness, or nutritional value. This<br>discovery has made Agrobacterium<br>an important tool for modern<br>agricultural scientists. Over 90% of<br>current genetically modified crops<br>contain genes transferred into plant<br>genomes using Agrobacterium's<br>conjugation capabilities. These<br>crops include soybeans, cotton,<br>corn, sugar beets, wheat, rice, and<br>more. Who knew that bacterial sex<br>could be so appetizing?                                                          |
| Bacteriophage<br>life cycle | Design a<br>bacteriophage<br>cross that will<br>allow the<br>calculation of<br>genetic map<br>distance between<br>two genes. | Phage therapy<br>for treating<br>antibiotic<br>resistant<br>infections | Bacteriophages are found nearly<br>everywhere you can look on Earth.<br>You can find them in locations as<br>diverse as the soil, the intestines of<br>animals, and sea water. Almost as<br>soon as phages were discovered in<br>the early 1900's, researchers<br>began to investigate how they<br>could use the natural bacteria-<br>killing activity of phages to combat<br>bacterial infection in humans.<br>During World War II, the Soviet<br>Union used bacteriophages to treat<br>soldiers with dysentery and<br>gangrene. When antibiotics were<br>discovered in the 1941, scientists in<br>the U.S. and Europe lost interest in<br>phage therapies, thinking<br>antibiotics had made them<br>irrelevant. However, since antibiotic<br>resistance appeared in the 1950's<br>and accelerated throughout the 20 <sup>th</sup><br>and 21 <sup>st</sup> century, the scientific<br>community has found a renewed<br>interest in phage therapy as an |

| Table S1  | (Continued) | ١  |
|-----------|-------------|----|
| I able SI | (Continueu) | ). |

|                                                                         |                                                                                                                          |                                 | alternative to antibiotics. Now,<br>researchers are actively looking<br>into using phage to combat food<br>borne illnesses, cholera, and even<br>acne!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Complementation<br>tests using<br>temperature<br>sensitive<br>mutations | Design a<br>complementation<br>test in phage that<br>will determine<br>whether two<br>mutations are in<br>the same gene. | Deep sea<br>geothermal<br>vents | In the lab, we often take advantage<br>of certain mutations that make<br>phage or bacteria more sensitive to<br>high temperatures in order to solve<br>important genetic questions.<br>However, in nature some of the<br>most fascinating bacteria are not<br>very sensitive to high temperatures<br>at all. In some of the deepest<br>corners of the ocean where no<br>sunlight reaches, cracks in the<br>Earth's crust result in undersea<br>volcanos spouting geothermally<br>heated water that can reach up to<br>464 degrees Celsius. While you<br>might think that these so-called<br>"geothermal vents" would be<br>inhospitable to life, they actually<br>play host to complex biological<br>communities which rely on<br>hyperthermophilic, or heat-loving,<br>bacteria. The protein molecules in<br>these bacteria exhibit<br>hyperthermostability, meaning that<br>they can maintain their structure<br>and function at extremely high<br>temperatures. In March of 2017,<br>researchers found fossilized<br>evidence that some of these hardy<br>bacteria may have been the oldest<br>forms of life on Earth, living here as<br>early as 4.3 billion years ago. So<br>while temperature sensitive<br>mutations may help us in the lab,<br>you might want to take some time<br>to appreciate the heat-tolerant<br>bacteria at the bottom of the ocean;<br>after all, they may be your<br>ancestors. |

**Table S2.** Examples of questions used in video quizzes. Questions are listed alongside the associated video lecture topic and course learning outcome most closely aligned to the associated topic.

| Associated<br>topic                                    | Associated<br>learning<br>outcome                                                                                                               | Example video quiz question                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mendelian<br>genetics and<br>Independent<br>assortment | Explain how<br>independent<br>assortment of<br>alleles during<br>meiosis can lead<br>to new<br>combinations of<br>alleles of<br>unlinked genes. | Round, Yellow       Wrinkled, Green         P       X       Image: Compare the possible gametes produced by F1 peas?         F1       Image: Compare the possible gametes produced by F1 peas?         Select one:       a.yyrr, YyRr, YYRR         b.R.r.Y.y       c.Rr, Yy, RR, rr, YY, yy                           |
| Consanguinuity<br>and pedigree<br>analysis             | Calculate the<br>probability that an<br>individual in a<br>pedigree has a<br>particular<br>genotype.                                            | <ul> <li>d.YR, YR, Yr, yr</li> <li>If a red-green colorblind (cb) man marries a woman with normal vision whose father was red-green colorblind (cb), what is the probability that their 1<sup>st</sup> child is colorblind?</li> <li>A. 1/2</li> <li>B. 1/3</li> <li>C. 1/4</li> <li>D. 1/6</li> <li>E. 1/8</li> </ul> |
|                                                        |                                                                                                                                                 | Select one:<br>a.A<br>b.B<br>c.C<br>d.D<br>e.E<br>Check                                                                                                                                                                                                                                                                |

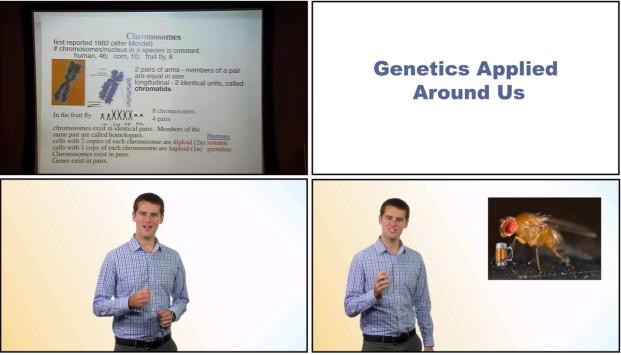
| Chromosomes<br>and ploidy                                    | Explain the<br>meaning of ploidy<br>and how it relates<br>to the number of<br>homologues of<br>each<br>chromosome.                    | Which of the cells are haploid?<br>Which of the cells are haploid?<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Thomas Hunt<br>Morgan's<br>chromosomal<br>theory of heredity | Describe<br>Morgan's<br>experiment which<br>shows that the<br>white gene of<br>Drosophila is<br>inherited in a sex-<br>linked manner. | In Drosophila, the bar mutant is characterized by eyes that are restricted to a narrow, vertical bar.<br>wild type<br>wild type<br>wild type<br>bar mutant<br>When a bar female is mated to a wild-type male, all the F1 flies are bar. When a bar male is mated to a wild-type female, 857 bar females and 905 wild-type males are observed.<br>What is the mode of inheritance of the bar mutant?<br>Selectone:<br>a autosomal dominant<br>c.x-linked dominant<br>c.x-linked dominant |

| Genetic mapping | Explain how<br>genetic distance<br>is different from<br>physical distance.<br>Calculate gene<br>linkage and<br>genetic map<br>distances and<br>interference from<br>frequency of<br>progeny with<br>recombinant<br>phenotypes from<br>2-factor and 3-<br>factor genetic<br>crosses. | 23andMe, inclusivity in genetic studies<br>You do a test cross and get the following progeny.<br>A and B are dominant, a and b are recessive.<br>P AABB x aabb<br>F1 AaBb x aabb<br>F2 36 A B<br>14 A_bb<br>16 aaB<br>34 aabb<br>Are genes A and B linked? If so, how many m.u. separate them<br>A. 5 m.u.<br>B. 10 m.u.<br>C. 20 m.u.<br>D. 30 m.u.<br>E. 40 m.u.<br>F. Thev are not linked.<br>Select one:<br>a.A<br>b.B<br>c.C<br>d.D |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Probability     | Calculate the<br>probability that an<br>individual has a<br>given phenotype.                                                                                                                                                                                                        | <ul> <li>e.E</li> <li>f.F</li> <li>The Mendelian paradox</li> <li>P RR yy PP x rr YY pp <ul> <li>F1 Rr Yy Pp (round, yellow, purple)</li> </ul> </li> <li>If Rr Yy Pp were selfed, what proportion of the progeny would have dominant phenotype for all three genes?</li> <li>Selectone: <ul> <li>a.1/8</li> <li>b.1/16</li> <li>c.3/16</li> <li>d.1/64</li> <li>e.3/64</li> <li>f.9/64</li> <li>g.27/64</li> </ul> </li> </ul>          |

| Table S2 (Continue                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The one gene,<br>one enzyme<br>hypothesis | Discuss Beadle<br>and Tatum's "one<br>gene, one<br>enzyme"<br>hypothesis.                                      | Beadle and Tatum - ONE GENE-ONE ENZYME         Precursor       Enz. A ornithine       Enz. B citruline       Enz. C arginine         Ornithine       Citrulline       Arginine         arg-1       +       +       +         arg-2       -       +       +         arg-3       -       -       +         The table shows the growth characteristics for three E. coli strains that are each auxotrophic for a different gene required for arg biosynthesis. |
|                                           |                                                                                                                | Q. Is arg-1 mutant in Enz. A, Enz. B or Enz. C?                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                           |                                                                                                                | Select one:<br>a.A<br>b.B<br>c.C                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Replica plating                           | Design a screen<br>for isolating<br>antibiotic<br>resistance<br>mutants and<br>auxotrophic<br>revertants.      | The plates shown below contain different sugars as carbon sources<br>as indicated. Cells were first plated on minimal media with glucose<br>(master plate) and then replica plated onto plates with lactose,<br>mannose or arabinose (no glucose).                                                                                                                                                                                                          |
| Bacteriophage<br>life cycle               | Design a<br>bacteriophage<br>cross that will<br>allow the<br>calculation of<br>genetic map<br>distance between | What is the map distance between the two rapid lysis mutations $r^c$ and $r^d$ given the data below?<br>$r^{c-} X r^{d-}$<br>$\downarrow$<br>76% large plaques<br>24% small plaques                                                                                                                                                                                                                                                                         |
|                                           | two genes.                                                                                                     | Select one:         a.6 mu.         b.12 mu.         c.24 mu.         d.38 mu.         e.48 mu.                                                                                                                                                                                                                                                                                                                                                             |

**Table S3.** Video quiz scores, interest, perceived relevance, perceived learning, and course outcomes by first-generation status and URM status.

|                      | Non-FG <i>(n=451)</i> |        | FG <i>(n</i> =275) |        | Non-URM ( <i>n</i> =592) |        | URM ( <i>n</i> =145) |        |
|----------------------|-----------------------|--------|--------------------|--------|--------------------------|--------|----------------------|--------|
|                      | Control               | SD     | Control            | SD     | Control                  | SD     | Control              | SD     |
| Midterm 1            | 76.73                 | 75.76  | 71.08              | *75.48 | 76.80                    | 78.78  | 66.11                | 63.11  |
| Final Exam           | 166.54                | 165.71 | 160.75             | 163.64 | 167.93                   | 170.38 | 150.22               | 143.67 |
| Course<br>Percentage | 85.96                 | 85.22  | 82.69              | 84.53  | 86.25                    | 87.02  | 78.78                | 76.84  |


\*p=0.037

|                      | Non-FG <i>(n=259)</i> |        | FG <i>(n=177)</i> |        | Non-URM ( <i>n</i> =349) |        | URM (n=94) |        |
|----------------------|-----------------------|--------|-------------------|--------|--------------------------|--------|------------|--------|
|                      | Control               | SD     | Control           | SD     | Control                  | SD     | Control    | SD     |
| Midterm 1            | 76.40                 | 75.86  | 70.49             | 74.81  | 77.19                    | 79.42  | 62.73      | 61.01  |
| Final Exam           | 166.06                | 167.58 | 159.76            | 163.54 | 167.8                    | 172.68 | 147.72     | 142.34 |
| Course<br>Percentage | 85.89                 | 85.65  | 82.47             | 84.31  | 86.43                    | 87.63  | 77.53      | 76.17  |

**Table S4.** Course outcomes for students with low prior knowledge by first-generation status and URM status.

|                      | Non-FG <i>(n=192)</i> |        | FG <i>(n=98)</i> |        | Non-URM ( <i>n</i> =242) |        | URM (n=61) |        |
|----------------------|-----------------------|--------|------------------|--------|--------------------------|--------|------------|--------|
|                      | Control               | SD     | Control          | SD     | Control                  | SD     | Control    | SD     |
| Midterm 1            | 77.19                 | 75.63  | 72.25            | 76.59  | 76.21                    | 77.88  | 72.62      | 66.80  |
| Final Exam           | 167.20                | 163.28 | 162.72           | 163.81 | 168.12                   | 167.20 | 155.04     | 146.00 |
| Course<br>Percentage | 86.06                 | 84.67  | 83.13            | 84.89  | 85.98                    | 86.16  | 81.18      | 78.01  |

**Table S5.** Course outcomes for students with high prior knowledge by first-generation status and URM status.



**Figure S1.** Seductive detail presentation. Seductive details were presented as visually abrupt interruptions to recorded video lectures. These clips were introduced each time with a "Genetics Applied Around Us" title slide followed by a video clip narrated by a different individual than the instructor of the course. Each seductive detail video clip also included pictures relevant to the real world examples being discussed to make them more visually interesting.