Supplemental Material CBE-Life Sciences Education

Cooper et al.

Supplemental online materials for The impact of broadly relevant novel discoveries on student project ownership in a traditional lab course turned CURE

Katelyn M. Cooper, Joseph N. Blattman, Taija Hendrix, Sara E. Brownell*

*Corresponding author. Email: <u>Sara.brownell@asu.edu</u>

This supplement contains the following:

Item	Page
Table S1. Results of chi square tests of independence of student demographics	2
Measures 3	
Table S2. Coding rubric for students' explanations of their agreement with the statement that they conducted scientific research in their immunology lab course.	t 8
Table S3. Student scores on the LCAS collaboration, iteration, and discovery/broad relevance scales	e 9
Table S4.Student agreement with the statement "I conducted scientific research in [the immunology lab course]."	10
Table S5. Results of chi square tests of independence comparing proportions of coded studer responses to the question about why they do or do not perceive they are participating in scien research.	
Table S6. Comparison of traditional lab student and CURE student mean cognitive ownership and emotional ownership scores	ip 12
Table S7.Summary of linear regression models exploring the relationship between lab course design features and students' cognitive and emotional ownership controlling for demographic	
References	14

Demographics ^a	Traditional	CURE	Results of chi square
	lab course	students	tests
	students		
	n = 32	n = 72	
	n (%)	n (%)	
Gender			_
Female	17 (53%)	42 (58%)	$x^2 = 0.10, p = 0.76$
Male	13 (41%)	28 (39%)	
Race/ethnicity ^b		· · ·	
Non-URM	21 (66%)	46 (64%)	$x^2 = 0.14, p = 0.71$
URM	8 (25%)	21 (29%)	· •
College generation status		· · /	
First generation	11 (34%)	29 (40%)	$x^2 = 0.39, p = 0.53$
Non-first generation	21 (66%)	42 (58%)	· •
Previous research experience			
No	15 (47%)	27 (38%)	$x^2 = 0.81, p = 0.37$
Yes	17 (53%)	45 (63%)	~ 1

Table S1.Results of chi square tests of independence. There were no significant demographic differences between students in the traditional lab course and students in the CURE courses.

^aWe did not compare the proportions of students who were reported "other" for their gender or race/ethnicity or of students who declined to state a demographic variable because of the small number of students in each category. Thus, the percentages in each demographic group may not add up to 100%. ^bStudents who identified as Black or African American, Hispanic, Latino/a, or of Spanish Origin were classified as underrepresented racial minorities (URM). Students who identified as Asian/Pacific Islander and White were classified as Non-URM.

MEASURES

Discovery/relevance scale	Strongly	mondach	Somewhat	Somewhat		Strongly
In this course I was	disagree	Disagree	disagree	agree	Agree	agree
expected to	(1)			(4)	(5)	(6)
	(1)	(2)	(3)	(4)	(3)	(0)
1. generate novel results						
that are unknown to the						
instructor and that could						
be of interest to the						
broader scientific						
community or others						
outside of the class						
2. conduct an						
investigation to find						
something previously						
unknown to myself, other						
students, and the						
instructor						
3. formulate my own						
research question or						
hypothesis to guide an						
<i></i>						
investigation						
4. develop new arguments						
based on data						
5. explain how my work						
has resulted in new						
scientific knowledge						

<u>The Laboratory Course Assessment Survey (Corwin et al., 2015)</u> Discovery/relevance scale (original Chronbach's alpha = 0.76)

Iteration Scale(original Chronbach's alpha = 0.75)

In this course	Strongly disagree	Disagree	Somewhat disagree	Somewhat agree	Agree	Strongly agree
	(1)	(2)	(3)	(4)	(5)	(6)
1. I had time to revisit or						
repeat work to account for						
errors or fix problems						
2. I had time to change the						
methods of the						
investigation if it was not						
unfolding as predicted						
3. I had time to share and						
compare data with other						
students						
4. I had time to collect and						

analyze additional data to	
address new questions or	
further test hypotheses	
that arose during the	
investigation	
5. I had time to revise or	
repeat analyses based on	
feedback	
6. I had time to revise	
drafts of papers or	
presentations about my	
investigation based on	
feedback	
IEEUUack	

Conaboration Scale (original Chronibaci	a s aipila – v	5.70)		
		One or two		
In this course I was encouraged to	Never	times	Monthly	Weekly
-	(1)	(2)	(3)	(4)
1.discuss elements of my investigation				
with my classmates or instructors				
2.reflect on what I was learning				
3. contribute my ideas and suggestions				
during class discussions				
4. help other students collect or analyze				
data				
5. provide constructive criticism to				
classmates and challenge each other's				
interpretations				
6. share the problems I encountered				
during my investigation and seek input				
on how to address them				

Collaboration Scale (original Chronbach's alpha = 0.76)

Perception of scientific research

	Strongly disagree									Strongly agree
	1	2	3	4	5	6	7	8	9	10
Scientific research is the type of research that is being done in faculty member research labs. Please indicate the extent you agree with the following statement: I conducted scientific research in MIC YYY: Experimental Immunology.										
Please explain your answer in 3-4 sentences.										

The Project Ownership Survey (Hanauer and Dolan, 2014

(original Chronbach's alpha = 0.92)

The original survey was adapted slightly for our study by replacing the words "research question" or "research project" with "the work I did in MIC YYY: Experimental Immunology." "YYY" is used in place of the course number.

Cognitive ownership scale

I	Strongly		Neither agree		
	disagree	Disagree	nor disagree	Agree	Strongly
	(1)	(2)	(3)	(4)	agree (5)
1. The work I did in MIC YYY:					
Experimental Immunology will help					
to solve a problem in the world.					
2.My findings in MIC YYY:					
Experimental Immunology were					
important to the scientific					
community.					
3. I faced challenges that I managed					
to overcome in completing the work I					
did in MIC YYY: Experimental					
Immunology.					
4. I was responsible for the outcomes					
of the work I did in MIC YYY:					
Experimental Immunology.					
5. The findings of the work I did in					
MIC YYY gave me a sense of					
personal achievement.					
6. I had a personal reason for					
choosing what I worked on in MIC					
YYY: Experimental Immunology.					
7. The work I did in MIC YYY:					
Experimental Immunology was					

important to me.
8. In conducting the work I did in
MIC YYY: Experimental
Immunology, I actively sought advice
and assistance
9. The work I did in MIC YYY:
Experimental Immunology was
interesting.
10. The work I did in MIC YYY
Experimental Immunology was
exciting.

Emotional ownership scale

Emotional ownership scale	Very				Very
	slightly	Slightly	Moderate	Considerably	strongly
	(1)	(2)	(3)	(4)	(5)
1. To what extent does the					
word <i>delighted</i> describe your					
experience in MIC YYY:					
Experimental Immunology?					
2. To what extent does the					
word <i>happy</i> describe your					
experience in MIC YYY:					
Experimental Immunology?					
3. To what extent does the					
word <i>joyful</i> describe your					
experience in MIC YYY:					
Experimental Immunology?					
4. To what extent does the					
word astonished describe your					
experience in MIC YYY:					
Experimental Immunology?					
5. To what extent does the					
word <i>surprised</i> describe your					
experience in MIC YYY:					
Experimental Immunology?					
6. To what extent does the					
word amazed describe your					
experience in MIC YYY:					
Experimental Immunology?					

Demographic questions

I most closely identify as

- Female
- Male
- Other, please describe
- Decline to state

I most closely identify as

- American Indian or Alaska Native
- Asian or Pacific Islander
- Black or African American
- Hispanic, Latino, or Spanish Origin
- White/Caucasian
- Other, please describe
- Decline to state

I most closely identify as a

- First generation college student whose parents' highest level of education is a high school diploma or less
- Non-first generation college student (at least one parent has some college or a college degree)
- Decline to state

Do you have undergraduate research experience?

- Yes
- No

Table S2. Coding rubric for students' explanation of their agreement with the statement that they conducted scientific research in their immunology lab course.

Topic	Description
Торіс	
Research was novel or broadly relevant	Student must describe that they engaged with a novel or broadly relevant research question or that they were doing real research with an unknown answer. The student canacknowledge that their work will lead to new information. Further, the student can acknowledge that the work they're doing is contributing to a faculty member's research. If a student simply lists the research question that they were answering, this is not sufficient to be coded as this category.
Research was not novel or broadly relevant	Student must describe that the research question they were answering had already been investigated, understood, or reproduced. Student can also describe that the research that they did was not real or not relevant.
Engaged in scientific practices	Student must describe engaging in a scientific practice including following the scientific method, making hypotheses, designing experiments, following protocols, learning or using techniques, analyzing data or interpreting data.
Lack of autonomy when engaging in scientific practices	Student must describe a lack of autonomy when engaging in a specific scientific process. For example, describing that they did not develop their own research question, set up their own experiments, or decide which experiments to perform.

	<u>Tradit</u> lab stu		<u>CURE</u> Students						
	Mean	SD	Mean	SD	Welch df	t	р	Hedge'sg	Possible range of scores
Collaboration scale	20.84	2.73	21.15	3.04	NA	0.49	0.62	0.11	6-24
Iteration scale	20.50	5.11	21.54	6.18	NA	0.83	0.41	0.18	6-36
Discovery scale	18.06	5.09	26.54	3.18	42.12	8.70	< 0.0001	2.18	5-30

Table S3. Student scores on the LCAS collaboration, iteration, and discovery/relevance subscales.^a

^aStudents in the CURE had significantly higher ratings than students in the traditional lab course on the discovery/relevance scale, but there were no significant differences between student ratings on the collaboration scale or iteration scale. The collaboration scale measures how often students engage in collaborative activities in lab ranging from never (1) to weekly (4). The iteration and discovery/relevance scales measure the extent to which students agree that they experience these dimensions with six response options ranging from strongly disagree (1) to strongly agree (6). The assumption of homogeneity was met for the collaboration and iteration subscales as well as the LCAS total score. However, it was not met for the discovery/relevance scale and thus Welch's *df* adjustment was made for the discovery scale only.

Table S4. Student agreement with the statement "I conducted scientific research in [the immunology lab course]^a."

	Traditional lab students		<u>CURE</u> <u>Students</u>						
	Mean	SD	Mean	SD	Welch df	t	р	Hedges' g	Possible range of scores
Agreement student was conducting real research	6.71	2.66	8.57	1.69	40.75	3.59	< 0.001	0.91	1-10

^a Students in the CURE were more likely to agree that they had conducted real research in their immunology lab course than students in the traditional lab course. Students rated their agreement from (1) strongly disagree to (10) strongly agree. The assumption of homogeneity was not met forthis question and thus Welch's df adjustment was made.

Table S5. Results of chi square tests of independence comparing proportions of coded student
responses to the question about why they do or do not perceive they are participating in scientific
research.

Category	Traditional lab course students n = 27	CURE students n = 57	Results of chi square tests of independence
	n (%)	n (%)	
Research was novel or broadly relevant	0 (0%)	31 (54.4%)	$x^2 = 17.6, p < 0.0001$
Research was not novel	17 (63.0%)	0 (0%)	$x^2 = 41.9, p < 0.0001$
Engaged in scientific processes	16 (59.3%)	32 (56.1%)	$x^2 = 0.10, p = 0.76$
Lack of autonomy when engaging in scientific processes	2 (7.4%)	11 (19.3%)	$x^2 = 0.93, p = 0.33$

	Traditional lab students		<u>CURE S</u>	Students				
	Mean	SD	Mean	SD	t	р	Hedges' g	Possible range of scores
Cognitive ownership	36.72	5.24	40.71	5.89	3.29	0.001	0.69	10-50
Emotional ownership	17.84	4.15	20.60	5.19	2.65	< 0.01	0.56	6-30

Table S6. Comparison of traditional lab student and CURE student mean cognitive ownership and emotional ownership scores.

	Mo	del A: Cogi	nitive Own	<u>ership</u>	Mode	Model B: Emotional Ownership			
Variable	В	SE B	β	р	В	SE B	β	p	
(Intercept)	11.06	3.36		< 0.01	0.61	3.43		0.86	
Course type: (CURE)	-2.74	1.45	-0.21	0.06	-0.66	1.48	-0.06	0.66	
Collaboration	0.45	0.18	0.22	< 0.05	0.37	0.18	0.22	< 0.05	
Iteration	0.07	0.10	0.07	0.49	0.05	0.10	0.07	0.58	
Discovery/relevance	0.80	0.14	0.72	< 0.0001	0.45	0.14	0.48	< 0.01	
Gender (female)	-0.39	0.91	-0.03	0.67	-1.01	0.93	-0.10	0.28	
Race/ethnicity (URM)	0.23	0.98	0.02	0.82	0.35	1.00	0.03	0.73	
College gen. status (first-gen)	0.75	0.97	0.06	0.44	0.19	0.99	0.02	0.85	
Prior research experience (no)	-0.34	0.89	-0.03	-0.70	0.20	0.91	0.02	0.83	
Adjusted R^2	0.54				0.32				

Table S7. Summary of linear regression model exploring the relationship between lab course design features and students' cognitive and emotional ownership controlling for student demographics.^a

^aB represents unstandardized coefficients and β represents standardized coefficients.

Focus categories are indicated in parentheses.

REFERENCES

Corwin, L. A., Runyon, C., Robinson, A., & Dolan, E. L. (2015). The laboratory course assessment survey: a tool to measure three dimensions of research-course design. *CBE-Life Sciences Education*, *14*(4), ar37.

Hanauer, D. I., & Dolan, E. L. (2014). The project ownership survey: measuring differences in scientific inquiry experiences. *CBE-Life Sciences Education*, *13*(1), 149-158.