Supplemental Material

CBE—Life Sciences Education Dewey *et al*.

Table S1

Selected task instructions, example student responses and task outcomes for each module

Module	Task Instructions	Example Student Responses	Task Outcomes
A	Your goal is to decide how to collect the most reliable and accurate heart rate data possible. Outline two possible plans for collecting 15 heart rate measurements for both your experimental and comparison conditions. (Possible parameters to consider might include the number of fish to be sampled, the number of times an individual fish will be measured, etc.)	Plan A: There will be 15 control individuals § 15 experimental individuals. Each heart rate will be collected only once per individual. Plan B: There will be 5 control individuals and 5 experimental individuals. Each heart rate will be recorded 3 times per individual. We will be using the second strategy and measuring 5 individuals 3 times each. The benefit of this strategy is we can see the effect over an extended period of time and repetition helps improve accuracy in measurement.	To surface student ideas about sources of variation in the experiment. To reflect on different measurement methods with respect to accuracy and reliability. To collect data via two different measurement methods for Task C1.
Cl	Refer back to the Task A worksheet data table. Write two mathematical expressions that provide summary statistics of the data you collected. Use the consensus mathematical expressions to summarize the data from the two measuring strategies. Compare your summary statistics. Do the comparison samples differ from one another? What evidence from your summary statistics supports your conclusion?	$\frac{\sum all data points}{15} = avg$ $\frac{(each data point - mean data points)^2}{\# of all data points}$ Range=Maximum bpm-minimum bpm The comparison samples differ slightly from each other. In strategy B, the standard deviation is lower meaning the values are closer to the mean. Strategy B is more accurate but not by a whole lot.	To make connections between the two different measurement methods and variation in data. To develop consensus representations of mean and variation in data. To examine the effect of the two different measurement strategies on standard deviation and draw conclusions about accuracy.

C2	Examine the data table showing heart rate measurements from untreated zebrafish. The mean and standard deviation were calculated for various sample sizes. How would you describe the relationship between sample size and standard deviation? Support your answer with data from	As sample size increases, the standard deviation increases. While a sample size of 3 fish has a standard deviation of 8.0, a sample size of 300 fish has a standard deviation of 31.3. The standard deviation increases with sample size, then plateaus at the largest samples.	Having made the connection between standard deviation and variation, to connect standard deviation to sample size.
D	Below are four graphs each containing two sample distributions. The distribution in gray is from samples that were treated with Compound X. Using your knowledge of distributions and summary statistics, rank these four graphs based on how confident you would be that Compound X has an effect (1=most confident). Explain your reasoning. Below is the formula to calculate a t-statistic. Describe (in a short phrase) what each boxed quantity represents.	The likelihood that two distributions would be as distinct and as far apart as in B by random chance is highly unlikely, whereas the distributions are so close and so variable in C, it would be hard to conclude anything – they share most of their data. A: Average of Sample A B: Average of Sample B C: Standard Deviation of Sample A D: Standard Deviation of Sample B Written above numerator: Mean _A -Mean _B Written below denominator: St. DeV _A + St. DeV _B (Variance) (Variance)	To use graphical representations to support students' understanding of t- statistic and thus p- value. To relate the components of the t- statistic equation to means and standard deviation. To use the mathematical and graphical representations to support understanding that t-statistics is a comparison of the difference between the means and the extent of the variation of the samples.

D	Below is data from an	T-statístíc: Small; P-value: Large;	To relate t-statistics to
(cont.)	experiment. Using the	Statístical conclusion: Not significant.	p-value and the
` ´	two sample distributions		probability that the
	shown on the graph,	S1: Sínce there is large overlap, the means	difference in the
	predict the size of the t-	won't be significantly different, thus the	means could occur by
	statistic and p-value that	test will not have a large statistic and we	chance.
	would result from a t-	will have a large p-value, a high chance	
	test by circling below.	that any significance is due to chance.	
	Then, predict whether		
	the difference between	S2: The difference in means being quite	
	the means of the two	small led me to conclude that the p-value is	
	samples would be	large. The difference in means divided by	
	statistically significant	the difference in Variation seems to be a	
	and explain your	SMALL NUMBER NERE.	
	reasoning.		
В	The data tables show the		To graphically
	mass of plants collected		represent data using
	trom three different		summary statistics and
	samples of a plot of land	520 grid	to identify key
	at Year 0, Year 5 and	n pp Live Mars	elements of graph.
	Year 10. One plot of	Ki s	
	and has been treated	250 Cristed	
	with leftilizer, the other		
	interested in exploring		
	changes over time in	We chose to draw a line graph because it	
	response to fertilizer	showed the data in a chronological order.	
	Using data from the	This graph also shows the differences	
	above tables draft a	between the experimental and control group.	
	graph showing how	w00	
	primary production	○ ≤ 00	
	changes over time. What		
	kind of graph did you	σ ₂ 400	
	create? Why?	300 Juve=1	
	5	200 control 42	
		Líne graph, to show change over tíme.	
		360	
		340	
		ิษ์ไข้ไข้เข้าข้ายของของข้ายข้ายข้ายข้ายข้าย Hime	

В		I chose a bar graph so I could compare the
(cont.)		control and experimental groups. I can look
· · · ·		at the differences in their masses.
	After class discussion	We created a bar graph to not only show how the NPK increased more than the control group but also to show a direct comparison between the control § NPK over each time interval. Key/legend that explains color coding
	After class discussion, what features should be	Títle Arís labels
	on a graph to clearly	Inite
	communicate results?	Trendline
		Indícator of summary statístics (mpan.
		standard deviation)

Table S2

Sample items from the BioVEDA assessment by topic area

Investigative Phase	Торіс	Sample Items
Phase	Identifying sources of variation in an experiment	 A researcher is interested in the effects of a drug that speeds up cell turnover on the rate of zebrafish fin regeneration. They grow two groups of 20 fish in two different fish tanks. One tank has the drug added to it, and the other does not. The researchers make identical wounds in each fish tail fin, and measure the degree of wound healing in each fish after 1 month. Which of the following is a source of organismal variation in this experiment? A. The rates of wound healing between the two treatment groups B. The size of the initial wound in the tail fin between the two groups C. The rates of wound healing within the same treatment group D. The size of the initial wound in the tail fin within the same treatment group
Experimental Design	Controlling for different sources of variation in an experiment	 Jane is measuring zebrafish heart rate in response to caffeine treatment. She makes sure that the fish tanks being used for the experiment are the same size, have the same volume of water in them, and are being kept at the same temperature. Why does Jane ensure that the tank setup is similar between the caffeine and comparison groups? A. She can be more certain that any effect she sees is due to the caffeine treatment, and not difference in housing conditions. B. Keeping the environment constant will minimize the amount of variation between individuals in the same treatment group. C. It is good scientific practice to ensure that there is no difference in the environment between experiment and comparison groups. D. She will be able to eliminate variation between the individuals within the caffeine-treated and comparison groups.
	Understanding the relationship between sample size and genetic variation in a biological data set	 A large sample size is desirable because a larger sample size will: A. Increase the amount of variation between individuals in the sample. B. Yield a more accurate estimate of the population being sampled. C. Decrease the amount of variation between individuals in the sample. D. None of the options are true.

	1	
	Representing observed variation in a data set	A group of students is testing whether large zebrafish have more offspring than small zebrafish. They collect data on the number of eggs laid by large fish and small fish. Their data is shown below (each point represents one fish, horizontal lines indicate the mean for each group).
Data Analysis	Understanding how observed variation impacts the outcome of statistical tests	 A researcher is measuring the difference in number of stripes of zebrafish. They analyze 1000 male and 1000 female fish, and find that male fish have 5 stripes and female fish have 6 stripes. In this population, you do not see any variation in stripe number within each sex. Do you need to perform a statistical test? A. Yes, because they are comparing two conditions (males vs. females). B. Yes, because it is good scientific practice to perform statistical tests after data collection. C. No, because the number of individuals sampled is high (n=1000). D. No, because there is no variation in these populations with respect to number of stripes.
	Interpreting p-values generated by statistical tests	Fred is doing an experiment to test if water temperature affects zebrafish lifespan. He grows 2 tanks of zebrafish, one at 28°C, and one at 25°C. He analyzes <u>300</u> fish per condition. His data is shown below: $\begin{bmatrix} 20 \\ 1.5 \\ 0.5 $

 Fred performs a t-test to determine whether there is a significant difference between the two treatments, and calculates a p-value of 0.8. What can Fred confidently conclude about his data? A. This experiment is inconclusive, because the p-value is greater than 0.05, so his data is not informative. B. This experiment is inconclusive, because his sample size is too small to yield informative results. C. Water temperature does affect lifespan because the
C. Water temperature does affect lifespan, because the range of lifespan is larger in fish grown at 25°C.
D. Water temperature doesn't affect lifespan, because there is no significant difference in lifespan of fish grown at the two temperatures.

From: Hicks, J., Dewey, J., Brandvain, Y., & Schuchardt, A. (2020). Development of the biological variation in experimental design and analysis (BioVEDA) assessment. *PLOS One, 15*(7).