You do not have any saved searches

  • articleFree

    Assessing Student Learning

    Abstract

    Biology education research has now reached a level of maturity where the expectation is that researchers will assess the effectiveness of their innovation on student learning. This may include an examination of affective outcomes, such as student attitudes and beliefs, as well as student understanding of discipline-based content. A variety of tools are available to generate assessment data, each with certain advantages and disadvantages. They include not only quantitative measures, which lend themselves to familiar statistical analyses, but also qualitative techniques that can provide a rich understanding of complex outcomes. This article describes some of the most commonly used assessment techniques, their advantages and disadvantages, and typical ways such information is reported.

  • articleFree

    Evaluation of Two CD-ROMs from a Series on Cell Biology

    Abstract

    Two CD-ROMs from a series dealing with various major aspects of cell biology are evaluated in this paper using quantitative and qualitative approaches. The findings delimit similarities and differences of the two CD-ROMs and shed light on how the programs could be used in the learning process and how they should not be. The overall impression, as well as the graphical and technical features, received a predominantly good rating. The defined target groups were reached (e.g., students in secondary schools), different learning approaches were supported (e.g., discovery and autonomous learning), the CD-ROMs' usability was assessed as being easy and intuitive, and the majority of the evaluators were satisfied with the level of interactivity. Navigational problems encountered in CD-ROM 1 were overcome by a successful implementation of new navigational functions in CD-ROM 2. Most students found the CD-ROM to be a suitable complement to, or an extension of, their lessons. We conclude that many, but not all of the requirements for the various stages of the learning process could be satisfied with the existing CD-ROMs. The requirements not met are discussed to obtain insights that could help to improve the production of multimedia learning material. The use of quantitative and qualitative approaches in the evaluation of learning modules is discussed, as the study began by collecting and analyzing anecdotal reviews and was then extended to include a qualitative evaluation.

  • articleFree

    Use of Animation in Teaching Cell Biology

    Abstract

    To address the different learning styles of students, and because students can access animation from off-campus computers, the use of digital animation in teaching cell biology has become increasingly popular. Sample processes from cell biology that are more clearly presented in animation than in static illustrations are identified. The value of animation is evaluated on whether the process being taught involves motion, cellular location, or sequential order of numerous events. Computer programs for developing animation and animations associated with cell biology textbooks are reviewed, and links to specific examples of animation are given. Finally, future teaching tools for all fields of biology will increasingly benefit from an expansion of animation to the use of simulation. One purpose of this review is to encourage the widespread use of animations in biology teaching by discussing the nature of digital animation.

  • articleFree

    Students' Studying and Approaches to Learning in Introductory Biology

    Abstract

    This exploratory study was conducted in an introductory biology course to determine 1) how students used the large lecture environment to create their own learning tasks during studying and 2) whether meaningful learning resulted from the students' efforts. Academic task research from the K-12 education literature and student approaches to learning research from the postsecondary education literature provided the theoretical framework for the mixed methods study. The subject topic was cell division. Findings showed that students 1) valued lectures to develop what they believed to be their own understanding of the topic; 2) deliberately created and engaged in learning tasks for themselves only in preparation for the unit exam; 3) used course resources, cognitive operations, and study strategies that were compatible with surface and strategic, rather than deep, approaches to learning; 4) successfully demonstrated competence in answering familiar test questions aligned with their surface and strategic approaches to studying and learning; and 5) demonstrated limited meaningful understanding of the significance of cell division processes. Implications for introductory biology education are discussed.

  • articleFree

    Survey of Undergraduate Research Experiences (SURE): First Findings

    Abstract

    In this study, I examined the hypothesis that undergraduate research enhances the educational experience of science undergraduates, attracts and retains talented students to careers in science, and acts as a pathway for minority students into science careers. Undergraduates from 41 institutions participated in an online survey on the benefits of undergraduate research experiences. Participants indicated gains on 20 potential benefits and reported on career plans. Over 83% of 1,135 participants began or continued to plan for postgraduate education in the sciences. A group of 51 students who discontinued their plans for postgraduate science education reported significantly lower gains than continuing students. Women and men reported similar levels of benefits and similar patterns of career plans. Ethnic groups did not significantly differ in reported levels of benefits or plans to continue with postgraduate education.