You do not have any saved searches

  • articleFree

    Characterization of Pathogenic Human MSH2 Missense Mutations Using Yeast as a Model System: A Laboratory Course in Molecular Biology

    Abstract

    This work describes the project for an advanced undergraduate laboratory course in cell and molecular biology. One objective of the course is to teach students a variety of cellular and molecular techniques while conducting original research. A second objective is to provide instruction in science writing and data presentation by requiring comprehensive laboratory reports modeled on the primary literature. The project for the course focuses on a gene, MSH2, implicated in the most common form of inherited colorectal cancer. Msh2 is important for maintaining the fidelity of genetic material where it functions as an important component of the DNA mismatch repair machinery. The goal of the project has two parts. The first part is to create mapped missense mutation listed in the human databases in the cognate yeast MSH2 gene and to assay for defects in DNA mismatch repair. The second part of the course is directed towards understanding in what way are the variant proteins defective for mismatch repair. Protein levels are analyzed to determine if the missense alleles display decreased expression. Furthermore, the students establish whether the Msh2p variants are properly localized to the nucleus using indirect immunofluorescence and whether the altered proteins have lost their ability to interact with other subunits of the MMR complex by creating recombinant DNA molecules and employing the yeast 2-hybrid assay.

  • articleFree

    The University of Alabama at Birmingham Center for Community OutReach Development Summer Science Institute Program: A 3-Yr Laboratory Research Experience for Inner-City Secondary-Level Students

    Abstract

    This article describes and assesses the effectiveness of a 3-yr, laboratory-based summer science program to improve the academic performance of inner-city high school students. The program was designed to gradually introduce such students to increasingly more rigorous laboratory experiences in an attempt to interest them in and model what “real” science is like. The students are also exposed to scientific seminars and university tours as well as English and mathematics workshops designed to help them analyze their laboratory data and prepare for their closing ceremony presentations. Qualitative and quantitative analysis of student performance in these programs indicates that participants not only learn the vocabulary, facts, and concepts of science, but also develop a better appreciation of what it is like to be a “real” scientist. In addition, the college-bound 3-yr graduates of this program appear to be better prepared to successfully academically compete with graduates of other high schools; they also report learning useful job-related life skills. Finally, the critical conceptual components of this program are discussed so that science educators interested in using this model can modify it to fit the individual resources and strengths of their particular setting.